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Preface

This book is based on notes for the lecture course “Measure and Integration”
held at ETH Ziirich in the spring semester 2014. Prerequisites are the first
year courses on Analysis and Linear Algebra, including the Riemann inte-
gral [9] [18] [19] 21], as well as some basic knowledge of metric and topological
spaces. The course material is based in large parts on Chapters 1-8 of the
textbook “Real and Complex Analysis” by Walter Rudin [17]. In addition
to Rudin’s book the lecture notes by Urs Lang [10, [11], the five volumes on
measure theory by David H. Fremlin [4], the paper by Heinz Kénig [§] on
the generalized Radon—Nikodym theorem, the lecture notes by C.E. Heil [7]
on absolutely continuous functions, Dan Ma’s Topology Blog [12] on exotic
examples of topological spaces, and the paper by Gert K. Pedersen [16] on
the Haar measure were very helpful in preparing this manuscript.

This manuscript also contains some material that was not covered in the
lecture course, namely some of the results in Sections and (concerning
the dual space of LP(u) in the non o-finite case), Section on the Gen-
eralized Radon—Nikodym Theorem, Sections and on Marcinkiewicz
interpolation and the Calderén—Zygmund inequality, and Chapter |8 on the
Haar measure.

I am grateful to many people who helped to improve this manuscript.
Thanks to the students at ETH who pointed out typos or errors in earlier
drafts. Thanks to Andreas Leiser for his careful proofreading. Thanks to
Theo Buehler for many enlightening discussions and for pointing out the
book by Fremlin, Dan Ma’s Topology Blog, and the paper by Pedersen.
Thanks to Urs Lang for his insightful comments on the construction of the
Haar measure.

1 August 2015 Dietmar A. Salamon
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Introduction

We learn already in high school that integration plays a central role in math-
ematics and physics. One encounters integrals in the notions of area or
volume, when solving a differential equation, in the fundamental theorem of
calculus, in Stokes’ theorem, or in classical and quantum mechanics. The
first year analysis course at ETH includes an introduction to the Riemann
integral, which is satisfactory for many applications. However, it has certain
drawbacks, in that some very basic functions are not Riemann integrable,
that the pointwise limit of a sequence of Riemann integrable functions need
not be Riemann integrable, and that the space of Riemann integrable func-
tions is not complete with respect to the L'-norm. One purpose of this book
is to introduce the Lebesgue integral, which does not suffer from these draw-
backs and agrees with the Riemann integral whenever the latter is defined.
Chapter [1| introduces abstract integration theory for functions on measure
spaces. It includes proofs of the Lebesgue Monotone Convergence Theorem,
the Lemma of Fatou, and the Lebesgue Dominated Convergence Theorem.
In Chapter [2] we move on to outer measures and introduce the Lebesgue
measure on Euclidean space. Borel measures on locally compact Hausdorff
spaces are the subject of Chapter Here the central result is the Riesz
Representation Theorem. In Chapter 4] we encounter LP spaces and show
that the compactly supported continuous functions form a dense subspace of
L? for a regular Borel measure on a locally compact Hausdorff space when
p < oo. Chapter 5| is devoted to the proof of the Radon—Nikodym theorem
about absolutely continuous measures and to the proof that L9 is naturally
isomorphic to the dual space of LP when 1/p+1/¢ = 1 and 1 < p < oc.
Chapter [6] deals with differentiation. Chapter [7]introduces product measures
and contains a proof of Fubini’s Theorem, an introduction to the convolu-
tion product on L'(R™), and a proof of the Calderén—Zygmund inequality.
Chapter |8 constructs Haar measures on locally compact Hausdorff groups.



2 CONTENTS

Despite the overlap with the book of Rudin [17] there are some differ-
ences in exposition and content. A small expository difference is that in
Chapter |1 measurable functions are defined in terms of pre-images of (Borel)
measurable sets rather than pre-images of open sets. The Lebesgue measure
in Chapter [2|is introduced in terms of the Lebesgue outer measure instead of
as a corollary of the Riesz Representation Theorem. The notion of a Radon
measure on a locally compact Hausdorff space in Chapter |3| is defined in
terms of inner regularity, rather than outer regularity together with inner
regularity on open sets. This leads to a somewhat different formulation of
the Riesz Representation Theorem (which includes the result as formulated
by Rudin). In Chapters |4] and [5| it is shown that L?(u) is isomorphic to
the dual space of LP(u) for all measure spaces (not just the o-finite ones)
whenever 1 <p<oo and 1/p+1/¢=1. It is also shown that L>®(u) is
isomorphic to the dual space of L'(u) if and only if the measure space is
localizable. Chapter |5|includes a generalized version of the Radon-Nikodym
theorem for signed measures, due to Fremlin [4], which does not require that
the underying measure y is o-finite. In the formulation of Konig [§] it asserts
that a signed measure admits a p-density if and only if it is both absolutely
continuous and inner regular with respect to p. In addition the present
book includes a self-contained proof of the Calderén-Zygmund inequality in
Chapter [7] and an existence and uniqueness proof for (left and right) Haar
measures on locally compact Hausdorff groups in Chapter [

The book is intended as a companion for a foundational one semester
lecture course on measure and integration and there are many topics that it
does not cover. For example the subject of probability theory is only touched
upon briefly at the end of Chapter [1| and the interested reader is referred to
the book of Malliavin [13] which covers many additional topics including
Fourier analysis, limit theorems in probability theory, Sobolev spaces, and
the stochastic calculus of variations. Many other fields of mathematics re-
quire the basic notions of measure and integration. They include functional
analysis and partial differential equations (see e.g. Gilbarg-Trudinger [5]),
geometric measure theory, geometric group theory, ergodic theory and dy-
namical systems, and differential topology and geometry.

There are many other textbooks on measure theory that cover most or
all of the material in the present book, as well as much more, perhaps from
somewhat different view points. They include the book of Bogachev [2]
which also contains many historical references, the book of Halmos [6], and
the aforementioned books of Fremlin [4], Malliavin [13], and Rudin [I7].



Chapter 1

Abstract Measure Theory

The purpose of this first chapter is to introduce integration on abstract mea-
sure spaces. The basic idea is to assign to a real valued function on a given
domain a number that gives a reasonable meaning to the notion of area un-
der the graph. For example, to the characteristic function of a subset of the
domain one would want to assign the length or area or volume of that subset.
To carry this out one needs a sensible notion of measuring the size of the sub-
sets of a given domain. Formally this can take the form of a function which
assigns a nonnegative real number, possibly also infinity, to each subset of
our domain. This function should have the property that the measure of a
disjoint union of subsets is the sum of the measures of the individual subsets.
However, as is the case with many beautiful ideas, this naive approach does
not work. Consider for example the notion of the length of an interval of real
numbers. In this situation each single point has measure zero. With the ad-
ditivity requirement it would then follow that every subset of the reals, when
expressed as the disjoint union of all its elements, must also have measure
zero, thus defeating the original purpose of defining the length of an arbitrary
subset of the reals. This reasoning carries over to any dimension and makes
it impossible to define the familiar notions of area or volume in the manner
outlined above. To find a way around this, it helps to recall the basic obser-
vation that any uncountable sum of positive real numbers must be infinity.
Namely, if we are given a collection of positive real numbers whose sum is
finite, then only finitely many of these numbers can be bigger than 1/n for
each natural number n, and so it can only be a countable collection. Thus it
makes sense to demand additivity only for countable collections of disjoint
sets.
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Even with the restricted concept of countable additivity it will not be
possible to assign a measure to every subset of the reals and recover the
notion of the length of an interval. For example, call two real numbers
equivalent if their difference is rational, and let E be a subset of the half
unit interval that contains precisely one element of each equivalence class.
Since each equivalence class has a nonempty intersection with the half unit
interval, such a set exists by the Axiom of Choice. Assume that all translates
of E have the same measure. Then countable additivity would imply that
the unit interval has measure zero or infinity.

One way out of this dilemma is to give up on the idea of countable ad-
ditivity and replace it by the weaker requirement of countable subadditivity.
This leads to the notion of an outer measure which will be discussed in Chap-
ter 2l Another way out is to retain the requirement of countable additivity
but give up on the idea of assigning a measure to every subset of a given
domain. Instead one assigns a measure only to some subsets which are then
called measurable. This idea will be pursued in the present chapter. A sub-
tlety of this approach is that in some important cases it is not possible to give
an explicit description of those subsets of a given domain that one wants to
measure, and instead one can only impose certain axioms that the collection
of all measurable sets must satisfy. By contrast, in topology the open sets
can often be described explicitly. For example the open subsets of the real
line are countable unions of open intervals, while there is no such explicit
description for the Borel measurable subsets of the real line.

The precise formulation of this approach leads to the notion of a o-algebra
which is discussed in Section[I.1] Section[I.2)introduces measurable functions
and examines their basic properties. Measures and the integrals of positive
measurable functions are the subject of Section [1.3] Here the nontrivial part
is to establish additivity of the integral and the proof is based on the Lebesgue
Monotone Convergence Theorem. An important inequality is the Lemma of
Fatou. It is needed to prove the Lebesgue Dominated Convergence Theorem
in Section [1.4]for real valued integrable functions. Section [1.5|deals with sets
of measure zero which are negligible for many purposes. For example, it is
often convenient to identify two measurable functions if they agree almost
everywhere, i.e. on the complement of a set of measure zero. This defines
an equivalence relation. The quotient of the space of integrable functions by
this equivalence relation is a Banach space and is denoted by L!. Section
discusses the completion of a measure space. Here the idea is to declare every
subset of a set of measure zero to be measurable as well.
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1.1 o-Algebras

For any fixed set X denote by 2% the set of all subsets of X and, for any
subset A C X, denote by A¢:= X \ A its complement.

Definition 1.1 (Measurable Space). Let X be a set. A collection A C 2%
of subsets of X 1is called a o-algebra if it satisfies the following azxioms.

(a) X € A.

(b) If A€ A then A € A.

(c) Every countable union of elements of A is again an element of A, i.e. if
A€ Afori=1,2,3,... then ;2 A; € A.

A measurable space is a pair (X, .A) consisting of a set X and a o-algebra
A C 2%, The elements of a o-algebra A are called measurable sets.
Lemma 1.2. Every o-algebra A C 2% satisfies the following.

(d) 0 e A.

(e) IfneNand Ay,..., A, € A then |J;_, A; € A.

(f) Every finite or countable intersection of elements of A is an element
of A.

(g) If A,B € Athen A\ B € A.

Proof. Condition (d) follows from (a), (b) because X¢ = (), and (e) follows
from (c), (d) by taking A; := @ for i > n. Condition (f) follows from (b),
(c), (e) because (N, A4;)°¢ = U, 4, and (g) follows from (b), (f) because
A\ B = An B¢ This proves Lemma[1.2] O
Example 1.3. The sets A := {0, X} and A := 2% are o-algebras.

Example 1.4. Let X be an uncountable set. Then the collection A4 C 2%
of all subsets A C X such that either A or A° is countable is a o-algebra.
(Here countable means finite or countably infinite.)

Example 1.5. Let X be a set and let {A;};c; be a partition of X, i.e.
A; is a nonempty subset of X for each i € I, A;NA; = 0 for i # j, and
X =Uer Ai- Then A:={A;:=;c,;A4;|J C I} is a o-algebra.

Exercise 1.6. (i) Let X be a set and let A, B C X be subsets such that
the four sets A\ B,B\ A, AN B, X \ (AU B) are nonempty. What is the
cardinality of the smallest o-algebra A C X containing A and B?

(ii) How many o-algebras on X are there when #X =k for k =0, 1,2, 3,47
(iii) Is there an infinite o-algebra with countable cardinality?
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Exercise 1.7. Let X be any set and let I be any nonempty index set.
Suppose that for every i € I a o-algebra A; C 2% is given. Prove that the
intersection A :=(,., Ai = {A C X|Ac A; forall i € I} is a o-algebra.

Lemma 1.8. Let X be a set and € C 2% be any set of subsets of X. Then
there is a unique smallest o-algebra A C 2% containing € (i.e. A is a o-
algebra, € C A, and if B is any other o-algebra with € C B then A C B).

Proof. Uniqueness follows directly from the definition. Namely, if A and B
are two smallest o-algebras containing £, we have both B C A and A C B
and hence A = B. To prove existence, denote by . C 22° the collection of
all o-algebras B C 2% that contain £ and define

,_ B if B C 2% is a o-algebra
A'_BDS/}B_{ACX such that £ C B then A € B }

Thus A is a o-algebra by Exercise Moreover, it follows directly from the
definition of A that £ C A and that every o-algebra B that contains £ also
contains A. This proves Lemma O

Lemmal[l.§]is a useful tool to construct nontrivial o-algebras. Before doing
that let us first take a closer look at Definition [[LTl The letter “o” stands for
“countable” and the crucial observation is that axiom (c) allows for countable
unions. On the one hand this is a lot more general than only allowing for
finite unions, which would be the subject of Boolean algebra. On the other
hand it is a lot more restrictive than allowing for arbitrary unions, which one
encounters in the subject of topology. Topological spaces will play a central
role in this book and we recall here the formal definition.

Definition 1.9 (Topological Space). Let X be a set. A collectionU C 2%
of subsets of X is called a topology on X if it satisfies the following azioms.
(a) 0, X eld.

(b) IfneN and Uy, ..., U, €U then (_, U; € U.

(c) If I is any index set and U; € U for i € I then |J,.; U; € U.

A topological space is a pair (X,U) consisting of a set X and a topology
U c 2%, If (X,U) is a topological space, the elements of U are called open
sets, and a subset F C X 1s called closed if its complement is open, i.e.
Fe e U. Thus finite intersections of open sets are open and arbitrary unions
of open sets are open. Likewise, finite unions of closed sets are closed and
arbitrary intersections of closed sets are closed.
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Conditions (a) and (b) in Definition are also properties of every o-
algebra. However, condition (c) in Definition is not shared by o-algebras
because it permits arbitrary unions. On the other hand, complements of
open sets are typically not open. Many of the topologies used in this book
arise from metric spaces and are familiar from first year analysis. Here is a
recollection of the definition.

Definition 1.10 (Metric Space). A metric space is a pair (X,d) con-
sisting of a set X and a function d : X x X — R satisfying the following
azTioms.

(a) d(z,y) >0 for all x,y € X, with equality if and only if x =y.

(b) d(z,y) = d(y,x) for all xz,y € X.

(c) d(x,2) < d(z,y) +d(y,z) for all z,y,z € X.

A function d : X x X — R that satisfies these axioms is called a distance
function and the inequality in (c) is called the triangle inequality. A

subset U C X of a metric space (X,d) is called open (or d-open) if, for
every x € U, there exists a constant € > 0 such that the open ball

B.(x) := Be(z,d) :={y € X |d(x,y) < &}

(centered at x with radius €) is contained in U. The collection of d-open

subsets of X will be denoted by U(X,d) :={U C X |U is d-open} .

It follows directly from the definitions that the collection U(X,d) C 2%
of d-open sets in a metric space (X, d) satisfies the axioms of a topology in
Definition [1.9} A subset F of a metric space (X,d) is closed if and only if
the limit point of every convergent sequence in F' is itself contained in F'.

Example 1.11. A normed vector space is a pair (X, ||||) consisting of a
real vector space X and a function X — R : z — ||z| satisfying the following.
(a) ||z|]| > 0 for all x € X, with equality if and only if = 0.

(b) [Az]| = |A| [|z|| for all z € X and X € R.

(c) llz +yll < llzll + llyl for all 2,y € X.

Let (X, ||||) be a normed vector space. Then the formula

d(x,y) = ||z -y

defines a distance function on X. X is called a Banach space if the metric
space (X, d) is complete, i.e. if every Cauchy sequence in X converges.
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Example 1.12. The set X = R of real numbers is a metric space with the
standard distance function

d(a,y) == |z —y.

The topology on R induced by this distance function is called the standard
topology on R. The open sets in the standard topology are unions of open
intervals. Exercise: Every union of open intervals is a countable union of
open intervals.

Exercise 1.13. Consider the set

R := [—00,00] := RU {—00, 00}.
For a,b € R define
(a,00] := (a,00) U {0}, [—00,b) := (—00,b) U {—00}.

Call a subset U C R open if it is a countable union of open intervals in R
and sets of the form (a, oo] or [—o0,b) for a,b € R.

(i) Show that the set of open subsets of R satisfies the axioms of a topology.
This is called the standard topology on R.

(ii) Prove that the standard topology on R is induced by the distance function
d:R xR — R, defined by the following formulas for z,y € R:

2|e* Y — e¥ 7|

d =
('Ta y) ety L eTY L YT L =Ty
2e"
d =d =—
(x,00) (00, x) prarpe—
2e”

d(x,—00) :=d(— = —

(, —00) (—o0, ) et
d(—00,00) := d(00, —00) := 2.

(iii) Prove that the map f : R — [—1,1] defined by

et —e "

er + e’

f(z) := tanh(z) := f(£o0) := %1,

for z € R is a homeomorphism. Prove that it is an isometry with respect
to the metric in (ii) on R and the standard metric on the interval [—1,1].
Deduce that (R, d) is a compact metric space.
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Exercise 1.14. Extend the total ordering of R to R by —oo < a < o0
for a € R. Extend addition by oo + a := oo for —oco < a < oo and by
—00 +a:=—o0 for —oo < a < oo. (The sum a + b is undefined W_hen
{a,b} = {—00,0}.) Let ay,a9,as,... and by, b, bs, ... be sequences in R.
(i) Define limsup,,_, ., @, and liminf,,_, a, and show that they always exist.
(ii) Show that limsup,,_,.(—a,) = — liminf, . a,.
(iii) Assume {a,,b,} # {—o00, 00} so the sum a,, + b, is defined for n € N.
Prove the inequality

lim sup(a,, + b,) < limsup a,, + limsup b,,

n—oo n—oo n—oo

whenever the right hand side exists. Find an example where the inequality
is strict.

(iv) If a,, < b, for all n € N show that liminf, . a, < liminf,_, b,.

Definition 1.15. Let (X,U) be a topological space and let B C 2% be the
smallest o-algebra containing U. Then B is called the Borel o-algebra of
(X,U) and the elements of B are called Borel (measurable) sets.

Lemma 1.16. Let (X,U) be a topological space. Then the following holds.
(i) Every closed subset F' C X is a Borel set.

(ii) Every countable union \J;=, F; of closed subsets F; C X is a Borel set.
(These are sometimes called F,-sets.)

(iii) Every countable intersection (\;=, U; of open subsets U; C X is a Borel
set. (These are sometimes called Gs-sets.)

Proof. Part (i) follows from the definition of Borel sets and condition (b) in
Definition[1.1} part (ii) follows from (i) and (c), and part (iii) follows from (ii)
and (b), because the complement of an Fj-set is a Gs-set. O

Consider for example the Borel o-algebra on the real axis R with its stan-
dard topology. In view of Lemma [1.16] it is a legitimate question whether
there is any subset of R at all that is not a Borel set. The answer to this
question is positive, which may not be surprising, however the proof of the
existence of subsets that are not Borel sets is surprisingly nontrivial. It will
only appear much later in this book, after we have introduced the Lebesgue
measure (see Lemma [2.15]). For now it is useful to note that, roughly speak-
ing, every set that one can construct in terms of some explicit formula, will
be a Borel set, and one can only prove with the Axiom of Choice that subsets
of R must exist that are not Borel sets.
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Recollections About Point Set Topology

We close this section with a digression into some basic notions in topology
that, at least for metric spaces, are familiar from first year analysis and will be
used throughout this book. The two concepts we recall here are compactness
and continuity. A subset K C X of a metric space (X, d) is called compact
if every sequence in K has a subsequence that converges to some element
of K. Thus, in particular, every compact subset is closed. The notion of
compactness carries over to general topological spaces as follows.

Let (X,U) be a topological space and let K C X. An open cover
of K is a collection of open sets {U;}ics, indexed by a set I, such that
K C U,e; Us- The set K is called compact if every open cover of K has a
finite subcover, i.e. if for every open cover {U,};c; of K there exist finitely
many indices i1, ...,4, € I such that K C U;; U---UU;,. When (X,d) is
a metric space and U = U(X,d) is the topology induced by the distance
function (Definition [1.10]), the two notions of compactness agree. Thus, for
every subset K C X, every sequence in K has a subsequence converging to an
element of K if and only if every open cover of K has a finite subcover. For a
proof see for example Munkres [14] or [20, Appendix C.1]. We emphasize that
when K is a compact subset of a general topological space (X,U) it does not
follow that K is closed. For example a finite subset of X is always compact
but need not be closed or, if i = {0, X} then every subset of X is compact
but only the empty set and X itself are closed subsets of X. If, however,
(X,U) is a Hausdorff space (i.e. for any two distinct points z,y € X there
exist open sets U,V € U such that x € U,y € V, and UNV = () then every
compact subset of X is closed (Lemma [A.2)).

Next recall that a map f : X — Y between two metric spaces (X, dx)
and (Y, dy) is continuous (i.e. for every € X and every ¢ > 0 there is a
d > 0 such that f(Bs(z,dx)) C B.(f(x),dy)) if and only if the pre-image
f7HV) :={z € X|f(z) € V} of every open subset of Y is an open subset
of X. This second notion carries over to general topological spaces, i.e. a
map f : X — Y between topological spaces (X,Ux) and (Y,Uy) is called
continuous if V € Uy = [f1(V) € Ux. It follows directly from the
definition that topological spaces form a category, in that the composition
go f: X — Z of two continuous maps f: X — Y and g : Y — Z between
topological spaces is again continuous. Another basic observation is that
if f: X — Y is a continuous map between topological spaces and K is a
compact subset of X then its image f(K) is a compact subset of Y.
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1.2 Measurable Functions

In analogy to continuous maps between topological spaces one can define
measurable maps between measurable spaces as those maps under which pre-
images of measurable sets are again measurable. A slightly different approach
is taken by Rudin [I7] who defines a measurable map from a measurable
space to a topological space as one under which pre-images of open sets are
measurable. Both definitions agree whenever the target space is equipped
with its Borel o-algebra.

As a warmup we begin with some recollections about pre-images of sets
that are also relevant for the discussion on page[10] For any map f: X — Y
between two sets X and Y and any subset B C Y, the pre-image

fU(B) ={z € X|f(z) € B}

of B under f is a well defined subset of X, whether or not the map f is
bijective, i.e. even if there does not exist any map f~! : ¥ — X. The
pre-image defines a map from 2¥ to 2X. It satisfies

=X, ) =0, (1.1)
and preserves union, intersection, and complement. Thus

Y\ B) =X\ f1(B) (1.2)

for every subset B C Y and

7 (UBZ) -Jrm), (ﬂ B@) -(/'B)  (13)

iel iel iel iel
for every collection of subsets B; C Y, indexed by a set I.

Definition 1.17 (Measurable Function). (i) Let (X, Ax) and (Y, Ay) be
measurable spaces. A map f: X — Y 1is called measurable if the pre-image
of every measurable subset of Y under f is a measurable subset of X, i.e.

Be Ay = f'(B) € Ax.

(ii) Let (X, Ax) be a measurable space. A function f : X — R is called
measurable if it is measurable with respect to the Borel o-algebra on R
assoctated to the standard topology in Ezercise (see Definition .
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(iii) Let (X,Ux) and (Y,Uy) be topological spaces. A map f : X — Y is
called Borel measurable if the pre-image of every Borel measurable subset
of Y under f is a Borel measurable subset of X.

Example 1.18. Let X be a set. The characteristic function of a subset
A C X is the function x4 : X — R defined by

1, ifxeA,
Xal2) = { 0, ifrg A (1.4)

Now assume (X, .A) is a measurable space, consider the Borel o-algebra on R,
and let A C X be any subset. Then y,4 is a measurable function if and only
if A is a measurable set.

Part (iii) in Definition is the special case of part (i), where Ay C 2%
and Ay C 2¥ are the o-algebras of Borel sets (see Definition [L.15). The-
orem below shows that every continuous function between topological
spaces is Borel measurable. It also shows that a function from a measur-
able space to a topological space is measurable with respect to the Borel
o-algebra on the target space if and only if the pre-image of every open set is
measurable. Since the collection of Borel sets is in general much larger than
the collection of open sets, the collection of measurable functions is then also
much larger than the collection of continuous functions.

Theorem 1.19 (Measurable Maps).

Let (X, Ax), (Y, Ay), and (Z, Az) be measurable spaces.

(i) The identity map idx : X — X is measurable.

) If f: X =Y and g : Y — Z are measurable maps then so is the
composition go f : X — Z.

(iii) Let f : X — Y be any map. Then the set

fAx ={BCY|f(B) e Ay} (1.5)

is a o-algebra on'Y, called the pushforward of Ax under f.
(iv) A map f: X =Y is measurable if and only if Ay C f.Ax.

Proof. Parts (i) and (ii) follow directly from the definitions. That the set
foAx C 2Y defined by is a o-algebra follows from equation (for
axiom (a)), equation (for axiom (b)), and equation (for axiom (c)).
This proves part (iii). Moreover, by Definition f is measurable if and
only if f~Y(B) € Ax for every B € Ay and this means that Ay C f.Ax.
This proves part (iv) and Theorem [1.19] O
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Theorem 1.20 (Measurable and Continuous Maps). Let (X, Ax) and
(Y, Ay) be measurable spaces. Assume Uy C 2Y is a topology on Y such
that Ay is the Borel o-algebra of (Y,Uy).

(i) A map f: X — Y is measurable if an only if the pre-image of every open
subset V- C'Y wunder f is measurable, i.e.

V €Uy = (V) € Ax.

(ii) Assume Ux C 2% is a topology on X such that Ax is the Borel o-algebra
of (X,Ux). Then every continuous map f : X — Y is (Borel) measurable.

Proof. By part (iv) of Theorem amap f : X — Y is measurable if
and only if Ay C f.Ax. Since f.Ax is a og-algebra on Y by part (iii) of
Theorem [1.19, and the Borel o-algebra Ay is the smallest o-algebra on Y
containing the collection of open sets Uy by Definition [I.15] it follows that
Ay C f.Ax if and only if Uy C f.Ax. By the definition of f,Ax in (1.5),
this translates into the condition V € Uy = f~1(V) € Ax. This proves
part (i). If in addition Ay is the Borel o-algebra of a topology Ux on X and
f (X, Ux) — (Y,Uy) is a continuous map then the pre-image of every open
subset V' C Y under f is an open subset of X and hence is a Borel subset
of X; thus it follows from part (i) that f is Borel measurable. This proves
part (ii) and Theorem [1.20] O

Theorem 1.21 (Characterization of Measurable Functions).
Let (X, A) be a measurable space and let f: X — R be any function. Then
the following are equivalent.

(1) f is measurable.

(ii) f~((a,00]) is a measurable subset of X for every a € R.
(iii) f~'([a,00]) is a measurable subset of X for every a € R.
(iv) f7H([=o0

[

(v) fH([~00,b]) is a measurable subset of X for every b € R.

,b)) is a measurable subset of X for every b € R.

Proof. That (i) implies (ii), (iii), (iv), and (v) follows directly from the def-
initions. We prove that (ii) implies (i). Thus let f : X — R be a function
such that f~!((a,00]) € Ax for every a € R and define

B:=fAx={BCR|fB)e Ax} c 2%
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Then B is a o-algebra on R by part (iii) of Theorem and (a, 00| € B for
every a € R by assumption. Hence [—00,b] = R\ (b, 0] € B for every b € R
by axiom (b) and hence

[—o0,b) = | J[~o0,b— 1] € B

neN

by axiom (c) in Definition Hence it follows from (f) in Lemma |1.2] that
(a,b) = [—00,b) N (a,00] € B

for every pair of real numbers a < b. Since every open subset of R is a
countable union of sets of the form (a,b), (a,o0], [—o0,b), it follows from
axiom (c) in Definition that every open subset of R is an element of B.
Hence it follows from Theorem[1.20]that f is measurable. This shows that (ii)
implies (i). That either of the conditions (iii), (iv), and (v) also implies (i) is
shown by a similar argument which is left as an exercise for the reader. This
proves Theorem [1.21} O

Our next goal is to show that sums, products, and limits of measurable
functions are again measurable. The next two results are useful for the proofs
of these fundamental facts.

Theorem 1.22 (Vector Valued Measurable Functions). Let (X,.A) be
a measurable space and let f = (f1,..., fn) : X = R™ be a function. Then f
is measurable if and only if f; : X — R is measurable for each i.

Proof. For i = 1,...,n define the projection m; : R® — R by m;(z) := x; for
r = (xq,...,7,) € R. Since 7; is continuous it follows from Theorems
and [1.20 that if f is measurable so is f; = m; 0 f for all i. Conversely, suppose
that f; is measurable for i =1,...,n. Let a; < b; for e = 1,...,n and define

Q(a,b) = {$ e R" | a; < x; < bl VZ} = (&1,b1) X - X (an,bn).
Then

FHQ(a, b)) = () 7 ((as, b)) € A
i=1
by property (f) in Lemma Now every open subset of R can be expressed
as a countable union of sets of the form Q)(a, b). (Prove this!) Hence it follows
from axiom (c) in Definition |1.1|that f~*(U) € A for every open set U C R"
and hence f is measurable. This proves Theorem [1.22 O]
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Lemma 1.23. Let (X,.A) be a measurable space and let u,v : X — R
be measurable functions. If ¢ : R?> — R is continuous then the function
h: X — R, defined by h(x) := ¢(u(x),v(x)) for z € X, is measurable.

Proof. The map f := (u,v): X — R? is measurable (with respect to the
Borel o-algebra on R?) by Theorem and the map ¢ : R? — R is Borel
measurable by Theorem [1.20, Hence the composition h = ¢o f: X — R is
measurable by Theorem [1.19] This proves Lemma [1.23 [

Theorem 1.24 (Properties of Measurable Functions).
Let (X,.A) be a measurable space.
(1) If f,9 : X — R are measurable functions then so are the functions

f+g.  fg,  max{fg},  min{fg}, I|f].
(ii) Let fr, - X = R, k=1,2,3,..., be a sequence of measurable functions.
Then the following functions from X to R are measurable:

inf fy, sup fx, lim sup fx, liminf fy.
k k k—o0 k—o0

Proof. We prove (i). The functions ¢ : R*> — R defined by ¢(s,t) := s +t,
o(s,t) := st, (s,t) := max{s,t}, ¢(s,t) := min{s,t}, or ¢(s,t) := |s| are all
continuous. Hence assertion (i) follows from Lemma [1.23]

We prove (ii). Define g := sup,, fx : X — R and let @ € R. Then the set

7 (ooe]) = { € X | sup (o) > o}
= {z € X |3k € N such that fi(x) > a}
= U e e X[ file) > a} = | £ ((a,0))

is measurable. Hence it follows from Theorem that ¢ is measurable.
It also follows from part (i) (already proved) that — f; is measurable, hence
so is supy(—fx) by what we have just proved, and hence so is the function
infy fr = —sup,(—fr). With this understood, it follows that the functions

lim su = inf su liminf f; = supinf
k_mp Jr = kzlz? s L Ji Zeg kzefk
are also measurable. This proves Theorem [T.24] O

It follows from Theorem that the pointwise limit of a sequence of
measurable functions, if it exists, is again measurable. This is in sharp con-
trast to Riemann integrable functions.



16 CHAPTER 1. ABSTRACT MEASURE THEORY

Step Functions

We close this section with a brief discussion of measurable step functions.
Such functions will play a central role throughout this book. In particular,
they are used in the definition of the Lebesgue integral.

Definition 1.25 (Step Function). Let X be a set. A function s : X — R
is called a step function (or simple function) if it takes on only finitely
many values, i.e. the image s(X) is a finite subset of R.

Let s : X — R be a step function, write s(X) = {a,..., s} with a; # a;
for i # j, and define 4; := s (o) = {r € X |s(z) =a;} for i =1,..., L.
Then the sets Ay, ..., Ay form a partition of X, i.e.

¢
X=J4,  ANA=0 fori#j (1.6)
i=1
(See Example [1.5]) Moreover,

l
s = ZaiXAm (17)
=1

where x4, : X — R is the characteristic function of the set A; fori =1,...,¢
(see equation (1.4)). In this situation s is measurable if and only if the set
A; C X is measurable for each i. For later reference we prove the following.

Theorem 1.26 (Approximation). Let (X,.A) be a measurable space and
let f: X — [0,00] be a function. Then f is measurable if and only if there
exists a sequence of measurable step functions s, : X — [0,00) such that

0 <s(x) <s9(z) <+ < fx), f(z) = lim s,(x) for all x € X.
n—oo
Proof. If f can be approximated by a sequence of measurable step func-

tions then f is measurable by Theorem [1.24] Conversely, suppose that f is
measurable. For n € N define ¢, : [0,00] — R by

k2 k2T <t < (k+1)27" k=0,1,...,n2" — 1,
On(t) = { n, if t > n. (1.8)

These functions are Borel measurable and satisfy ¢,(0) = 0 and ¢,,(c0) =n
for all n as well as t — 27" < ¢, (t) < ¢py1(t) <t whenever n > ¢ > 0. Thus

lim ¢,(t) =t for all ¢ € [0, oc].
n—o0

Hence the functions s,, := ¢, o f satisfy the requirements of the theorem. [J
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1.3 Integration of Nonnegative Functions

Our next goal is to define the integral of a measurable step function and
then the integral of a general nonnegative measurable function via approxi-
mation. This requires the notion of volume or measure of a measurable set.
The definitions of measure and integral will require some arithmetic on the
space [0, c0]. Addition to co and multiplication by oo are defined by

oo, ifa#0,
0, ifa=0.

a+00:=00+a:= 090, a~oo::oo-a::{

With this convention addition and multiplication are commutative, associa-
tive, and distributive. Moreover, if a; and b; are nondecreasing sequences
in [0, 00| then the limits a := lim; ,,, a; and b := lim; ., b; exists in [0, 00|
and satisfy the familiar rules a + b = lim;_,(a; + b;) and ab = lim;_,(a;b;).
These rules must be treated with caution. The product rule does not hold
when the sequences are not nondecreasing. For example a; := ¢ converges
to a = 00, b; := 1/i converges to b = 0, but a;b; = 1 does not converge to
ab = 0. (Exercise: Show that the sum of two convergent sequences in [0, 0o]
always converges to the sum of the limits.) Also, for all a, b, ¢ € [0, 00],

a+b=a+c, a < 00 = b=c,

ab = ac, 0<a< o — b=c.

Neither of these assertions extend to the case a = oco.
Definition 1.27 (Measure). Let (X,.A) be a measurable space. A measure
on (X, A) is a function

p: A— [0, 00]
satisfying the following axioms.
(a) p is o-additive, i.e. if A; € A, 1 =1,2,3,..., is a sequence of pairwise
disjoint measurable sets then

H (D A,;) = iﬂ(!‘li)-

(b) There exists a measurable set A € A such that p(A) < oo.

A measure space is a triple (X, A, ) consisting of a set X, a o-algebra
A C 2% and a measure p: A — [0, 00].
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The basic properties of measures are summarized in the next theorem.

Theorem 1.28 (Properties of Measures).
Let (X, A, p) be a measure space. Then the following holds.

(i) u(®) =
(ii) If n € N and Ay,..., A, € A such that A;NA; =0 fori# j then

(AU UAL) = p(Ar) + - 4 p(Ag).

(iii) If A, B € A such that A C B then u(A) < u(B).
(iv) Let A; € A be a sequence such that A; C A;yq for all i. Then

(1) e

(v) Let A; € A be a sequence such that A; D A;yq for alli. Then

pA) <oco = <ﬂA>—ggou )

Proof. We prove (i). Choose A; € A such that p(A;) < oo and define A; := 0
for i > 1. Then it follows from o-additivity that
(AY) = p(Ar) + > ()
i>1

and hence (@) = 0. This proves part (i).

Part (ii) follows from (i) and o-additivity by choosing A; := ) for i > n.

We prove (iii). If A,B € A such that A C B then B\ A € A by
property (g) in Lemma [1.2] and hence u(B) = pu(A) + w(B \ A) > u(A) by
part (ii). This proves part (iii).

We prove (iv). Assume A; C A;q for all ¢ and define By := A; and
B; := A; \ A;_; for i > 1. Then B; is measurable for all i and, for n € N,

i=1 1=1 i=1

Since B; N B; = for i # j it follows from o-additivity that

= Zl p(Bi) = lim Zl u(Bi) = lim p(A,).

Here the last equation follows from part (ii). This proves part (iv).
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We prove (v). Assume A; D A;;; for all i and define C; := A; \ Aiq1.
Then C; is measurable for all 7 and, for n € N,

AnzAUGCZ-, A::ﬁAi.
=1

=n

Since C; N C; = 0 for ¢ # j it follows from o-additivity that
u(An) = p(A) + > u(C)
for all n € N. Since p(A;) < oo it follows that Y .2, u(C;) < oo and hence

Jim p(An) = p(A) + lim 3 p(Ci) = p(A).

This proves part (v) and Theorem [1.28] ]

Exercise 1.29. Let (X, A, u) be a measure space and let A4; € A be a
sequence of measurable sets. Prove that p(lJ, Ai) < >, p(A;).

Example 1.30. Let (X, .A) be a measurable space. The counting measure
p: A — [0, 00] is defined by p(A) := #A for A € A. As an example, consider
the counting measure g : 2% — [0, 0o] on the natural numbers. Then the sets
A, = {n,n+1,---} all have infinite measure and their intersection is the
empty set and hence has measure zero. Thus the hypothesis p(A4;) < oo
cannot be removed in part (v) of Theorem [1.28

Example 1.31. Let (X, .A) be a measurable space and fix an element 2 € X.
The Dirac measure at 1z is the measure d,, : A — [0, oo] defined by

L 1, if xg € A,
50 (A) = { 0 tmga  frAca

Example 1.32. Let X be an uncountable set and let A be the o-algebra
of all subsets of X that are either countable or have countable complements
(Example [1.4). Then the function x : A — [0, 1] defined by u(A) := 0 when
A is countable and by p(A) := 1 when A€ is countable is a measure.

Example 1.33. Let X = (J,.; A; be a partition and let A C 2X be the o-
algebra in Example [1.5| Then any function I — [0,00] : i — «; determines a

measure /1 A — [0, 00] via p(Ay) =3, a; for J C T and Ay = e, Aj-
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With these preparations in place we are now ready to introduce the
Lebesgue integral of a nonnegative measurable function

Definition 1.34 (Lebesgue Integral). Let (X, A, n) be a measure space
and let E € A be a measurable set.
(i) Let s : X — [0,00) be a measurable step function of the form

s = ZaiXAi (1.9)
i=1

with a; € [0,00) and A; € A fori=1,...,n. The (Lebesgue) integral of
s over E is the number [, sdp € [0,00] defined by

/Esdu = zn:ai,u(E NA;). (1.10)

=1

(ii) Let f : X — [0, 00] be a measurable function. The (Lebesgue) integral
of f over E is the number [, fdu € [0,00] defined by

/fdu::sup/sd,u,
E s<fJE

where the supremum is taken over all measurable step function s : X — [0, 00)
that satisfy s(x) < f(z) for allx € X.

The reader may verify that the right hand side of depends only on s
and not on the choice of a; and A;. The same definition can be used if f is
only defined on the measurable set £ C X. Then Ag :={A € A|AC E}is
a o-algebra on F and g := |4, is a measure. So (E, Ag, ug) is a measure
space and the integral [ r [ dpg is well defined. It agrees with the integral of
the extended function on X, defined by f(z):=0 for z € X \ E.

Theorem 1.35 (Basic Properties of the Lebesgue Integral).
Let (X, A, p) be a measure space and let f,g : X — [0,00] be measurable
functions and let E € A. Then the following holds.

(i) If f < g on E then [, fdu < [, gdp.

(i) [pfdp= [y fxedu.

(iii) If f(xz) =0 for all x € E then [, fdp=0.
(iv) If u(E) = 0 then [, fdu = 0.

(v) IfAe Aand E C A then [, fdu < [, fdu.
(vi) If c € [0,00) then [, cfdu=c [, fdpu.
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Proof. To prove (i), assume f < gon F. If s : X — [0,00) is a measurable
step function such that s < f then sxg < g,s0 [, sdu = [, sxpdu < [, gdu
by definition of the integral of g. Now take the supremum over all measurable
step functions s < f to obtain [, fdu < [, gdu. This proves (i).

We prove (ii). It follows from the definitions that

/fdu:sup/sdu:sup/sxp;du: sup /tdu:/fXEdu.
E s<fJE s<fJX t<fxp JX X

Here the supremum is over all measurable step functions s : X — [0, 00),
respectively ¢ : X — [0,00), that satisfy s < f, respectively ¢t < fyg. The
second equation follows from the fact that every measurable step function
s : X — [0,00) satisfies [, sdu = [, sxgdp by definition of the integral.
The third equation follows from the fact that a measurable step function
t: X — [0,00) satisfies t < fyp if and only if it has the form ¢ = sypg for
some measurable step function s : X — [0, 00) such that s < f.

Part (iii) follows from part (i) with g = 0 and the fact that [, f du > 0 by
definition. Part (iv) follows from the fact that [, sdu = 0 for every measur-
able step function s when p(FE) = 0. Part (v) follows from parts (i) and (ii)
and the fact that fxg < fxa whenever E C A. Part (vi) follows from the
fact that [ pcsdu=c / g sdp for every c € [0, 00) and every measurable step
function s, by the commutative, associative, and distributive rules for calcu-
lations with numbers in [0, co]. This proves Theorem [1.35] O

Notably absent from the statements of Theorem is the assertion
that the integral of a sum is the sum of the integrals. This is a fundamental
property that any integral should have. The proof that the integral in Defi-
nition indeed satisfies this crucial condition requires some preparation.
The first step is to verify this property for integrals of step functions and the
second step is the Lebesgue Monotone Convergence Theorem [1.37]

Lemma 1.36 (Additivity for Step Functions). Let (X, A, ) be a mea-
sure space and let s,t : X — [0,00) be measurable step functions.

(i) For every measurable set E € A

/(s—l—t)du:/sdu—l—/tdu.
E E E

(ii) If Ey, Ey, Es, ... is a sequence of pairwise disjoint measurable sets then

[Esdu:;/Eksdu, E::UEk.

keN
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Proof. Write the functions s and ¢ in the form

s = ZOQ‘XAN = Z/Bijj
i=1 Jj=1

where o, 5; € [0,00) and A;, B; € A such that A, N Ay = 0 for i # ¢,
BjN By =0 for j # j', and X =2, Ai = J;_, Bj. Then

s+t= Z Z(O&Z + ﬁj)XAiﬁBj

i=1 j=1

and hence

m n

/(s—l—t)du = ZZal—l—ﬁj w(A;NB;NE)

=1 j=1

_ Zm:alzﬂA NB;NE) +Z@JZ,JA NB;NE)

= Zai,u(AiﬂE)%—Zﬁju(BjﬂE):/sdu—i-/td,u.
i=1 j=1 E E

To prove (ii), let Ey, Ey, Es, ... be a sequence of pairwise disjoint measurable
sets and define E := (J;, Ex. Then

/sd,u = ZaluEﬁA :i%qukﬂA
E k=1

=1 =1 =
= Zm:ai JL%ZM(Ek N A;)
= 7}1—{202%2“ (B NA;)
=1
= JLIEOZZ&ZM(E,C N A;)
k=1 i=1

= lim /sdu: /sd,u.

This proves Lemma |1.36| O
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Theorem 1.37 (Lebesgue Monotone Convergence Theorem).
Let (X, A, ) be a measure space and let f, : X — [0,00] be a sequence of
measurable functions such that

fo(@) < fari(x) for all x € X and all n € N.
Define f: X — [0,00] by

f(z) := lim f,(x) for v € X.

n—o0

Then f is measurable and
lim nmz/fm

Proof. By part (i) of Theorem we have

Ah@ééhﬂu

for all n € N and hence the limit
n—oo

a:= lim [ f,du (1.11)
b'e

exists in [0, 00]. Moreover, f = sup,, f, is a measurable function on X, by
part (ii) of Theorem [1.24] and satisfies f, < f for all n € N. Thus it follows
from part (i) of Theorem that

/fndug/fd,u for all n €N
X X

and hence

aS/deu. (1.12)

Now fix a measurable step function s : X — [0, 00) such that s < f. Define
ps = A — [0, 00] by

ps(E) == / sdp  for E € A. (1.13)
E
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This function is a measure by part (ii) of Lemma (which asserts that p is
o-additive) and by part (iv) of Theorem [1.35] (which asserts that z,(0) = 0).
Now fix a constant 0 < ¢ < 1 and define

E, ={z € X|cs(x) < fu(z)} for n € N.

Then E, € A is a measurable set and E,, C FE,; for all n € N. Moreover,
UJE. =x. (1.14)
n=1

(To spell it out, choose an element x € X. If f(z) = oo, then f,(z) — oo
and hence cs(z) < s(z) < f,(z) for some n € N, which means that x belongs
to one of the sets E,. If f(z) < oo, then f,(x) converges to f(z) > cf(x),
hence f,,(x) > cf(x) > cs(x) for some n € N, and for this n we have z € E,,.)
Since cs < f,, on E,, it follows from parts (i) and (vi) of Theorem that

cps(En):c/ sdp:/ csdu < fndug/fnd,uga.
Here the last inequality follows from the definition of « in ((1.11)). Hence

ps(En) < for all n e N. (1.15)

ol

Since ps 1 A — [0,00] is a measure, by part (i) of Theorem it follows
from equation (1.14)) and part (iv) of Theorem that

o9

. (1.16)

n—oo

[ sdi= (30 =l () <
X

Here the last inequality follows from ((1.15). Since (1.16|) holds for every
constant 0 < ¢ < 1, we have [ + Sdp < a for every measurable step function
s: X — [0,00) such that s < f. Take the supremum over all such s to obtain

/fd,u:sup/sd,ugoz.
X s<fJX

Combining this with (1.12) we obtain [, fdu = o and hence the assertion
of Theorem follows from the definition of « in ((1.11]). O
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Theorem 1.38 (0-Additivity of the Lebesgue Integral).
Let (X, A, p) be a measure space.

(1) If f,g : X — [0, 00| are measurable and E € A then

/E(erg)d/vb:/Efdqu/Egdu. (1.17)

(ii) Let f, : X — [0,00] be a sequence of measurable functions and define
f(z) = an(x) for z € X.
n=1

Then f: X — [0,00] is measurable and, for every E € A,

/fdp:i/fndu. (1.18)
B —~ Jg

(iii) If f : X — [0,00] is measurable and Ey, Eo, Es, ... is a sequence of
pairwise disjoint measurable sets then

/fdu:Z/ fdu,  E:=|]JEx (1.19)
E k=1 " Er keN

Proof. We prove (i). By Theorem there exist sequences of measurable
step functions s,,t, : X — [0,00) such that s, < s,.; and ¢, < ¢, for
all n € N and f(z) = lim, 00 sp(x) and g(z) = lim, o t,(x) for all z € X.
Then s, + t, is a monotonically nondecreasing sequence of measurable step
functions converging pointwise to f 4+ g. Hence

/X(f+g)du = lim [ (s, +t,)dp

n—oo X

= lim (/ snd,u—l—/tndu)

= lim Spdp + lim t,dp
X

n—oo X n—oo

= /deu—l—/xgdp.

Here the first and last equations follow from Theorem and the second
equation follows from part (i) of Lemma This proves (i) for £ = X. To
prove it in general, replace f, g by fxg, gxr and use part (ii) of Theoremm
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We prove (ii). Define g, : X — [0, 00] by g, :== Y ,_; fr- This is a nonde-
creasing sequence of measurable functions, by part (i) of Theorem and it
converges pointwise to f by definition. Hence it follows from part (ii) of The-
orem that f is measurable and it follows from the Lebesgue Monotone
Convergence Theorem that

/fdu = lim [ g,du
X X

n—oo
= lim/ fedu
= lim /f dp
= > [ fudn
n=1 X

Here the second equation follows from the definition of g, and the third
equation follows from part (i) of the present theorem (already proved). This
proves (ii) for £ = X. To prove it in general replace f, f,, by fxg, foxr and
use part (ii) of Theorem [L.35

We prove (iii). Let f : X — [0,00] be a measurable function and let
E). € A be a sequence of pairwise disjoint measurable sets. Define

E =] E, fo = fxa,-
k=1 k=1

Then it follows from part (i) of the present theorem (already proved) and
part (ii) of Theorem that

fndp = fxe, dp= fxe, dp = fdp.
/XM/XEXEM;/XXEM;Ekﬂ

Now f, : X — [0,00] is a nondecreasing sequence of measurable functions
converging pointwise to fxg. Hence it follows from the Lebesgue Monotone

Convergence Theorem that

fd:/fxd:hm/fnd:hm fdu= /fd.

This proves Theorem [1.38 O]
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Exercise 1.39. Let p : 2V — [0, 0o] be the counting measure on the natural
numbers. Show that in this case equation (1.18) in part (ii) of Theorem [1.3§]
is equivalent to the formula

f: (i aij) = i (i aij) (1.20)

i=1 \j=1 j=1 \i=1
for every map N x N — [0, 00] : (4, 7) +— aj;-

The next theorem shows that every measurable function f : X — [0, o]
induces another measure pi on (X, A).

Theorem 1.40. Let (X, A, i) be a measure space and let f: X — [0,00] be
a measurable function. Then the function py : A — [0, 00], defined by

1 (E) ::/Efdu for E e A (1.21)

[Egdufzéfgdu (1.22)

for every measurable function g : X — [0, 00| and every E € A.

Proof. py is o-additive by part (iii) of Theorem and pp(0) = 0 by
part (iv) of Theorem [1.35] Hence fi5 is a measure (see Definition [1.27). Now
let g := x4 be the characteristic function of a measurable set A € A. Then

/XXAdeZMf(A)Z/Afduzfxfx,qdu.

Here the first equation follows from the definition of the integral for measur-
able step functions in Definition [I.34] the second equation follows from the
definition of 417, and the last equation follows from part (ii) of Theorem
Thus equation (with £ = X) holds for characteristic functions of
measurable sets. Taking finite sums and using part (vi) of Theorem and
part (i) of Theorem we find that (with £ = X)) continues to hold
for all measurable step functions g = s : X — [0,00). Now approximate an
arbitrary measurable function g : X — [0, 00] by a sequence of measurable
step functions via Theorem [1.26| and use the Lebesgue Monotone Conver-
gence Theorem to deduce that equation holds with £ = X for
all measurable functions ¢ : X — [0,00]. Now replace g by gxg and use
part (ii) of Theorem to obtain equation in general. This proves
Theorem [1.40 O

1s a measure and
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It is one of the central questions in measure theory under which conditions
a measure A : A — [0,00] can be expressed in the form p; for some mea-
surable function f : X — [0, 00]. We return to this question in Chapter [5|
The final result in this section is an inequality which will be used in the proof
of the Lebesgue Dominated Convergence Theorem

Theorem 1.41 (Lemma of Fatou). Let (X, A, u) be a measure space and
let f, : X — [0,00] be a sequence of measurable functions. Then

n—o0

/ liminf f,, dp < hm 1nf/ frndp.
X

Proof. For n € N define g, : X — [0, o00] by
gn() = inf fi(2)
for x € X. Then g, is measurable, by Theorem [1.24] and
0(1) < (1) Sgyx) <o, lim gu(x) = liminf f,(2) = f(2)

for all z € X. Moreover, g, < f; for all ¢ > n. By part (i) of Theorem [L.35]

this implies
/ gndp < / fidp
X X

/%WSM/ﬁM
X izn Jx

for all n € N. Thus, by the Lebesgue Monotone Convergence Theorem [1.37],

/ fdp = lim / Indp < lim mf/ fidp =lim inf/ frndp.
Pe n—0oo [ n—o0 i>n n—o00 X
This proves Theorem O

for all 4 > n, and hence

Example 1.42. Let (X, A, 1) be a measure space and E € A be a measur-
able set such that 0 < u(E) < u(X). Define f, := xg when n is even and
fn:=1—xg when n is odd. Then liminf, .. f, = 0 and so

/ liminf f,dy =0 < min{u(E), w(X \ E)} = hm mf/ fndp.
X n—oo

Thus the inequality in Theorem [1.41| can be strict.
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1.4 Integration of Real Valued Functions

The integral of a real valued measurable function is defined as the difference
of the integrals of its positive and negative parts. This definition makes sense
whenever at least one of these numbers is not equal to infinity. It leads natu-
rally to the following concept of integrability and the Lebesque integral. The
basic properties of the Lebesgue integral are summarized in Theorem[1.44] be-
low. The main result of this section is the Lebesgue Dominated Convergence
Theorem [L.45]

Definition 1.43 (Lebesgue Integrable Functions). Let (X, A, i) be a
measure space. A function f : X — R is called (Lebesgue) integrable
or pu-integrable if f is measurable and fX|f|du < 00. Denote the set of
p-integrable functions by

L) = LYX, A, p) :=={f : X = R| f is p-integrable} .

The Lebesgue integral of f € L(11) over a set E € A is the real number

/E fp = [E £ dp - /E F~ dp, (1.23)

where the functions f*: X — [0,00) are defined by

fr(@) =max{f(x),0},  f(2):=max{-f(z), 0} (1.24)

The functions f* are measurable by Theorem and 0 < f* < |f|. Hence
their integrals over E are finite by part (i) of Theorem[1.35

Theorem 1.44 (Properties of the Lebesgue Integral).
Let (X, A, p) be a measure space. Then the following holds.

(i) The set LY(u) is a real vector space and, for every E € A, the function
L) = R f— [, fdu is linear, ie. if f,g € LY(p) and ¢ € R then
f+g.cf € L(n) and

dyp = d d dy = dy. 1.25
/E(f+g)u/Efu+/Egu, /ECfM C/Efu (1.25)
(ii) For all f,g € LY(n) and all E € A

f<gonFE — /Efdug/Egdu. (1.26)
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(iii) If f € LY(u) then |f] € LY (w) and, for all E € A,

/Efdu‘ S/E!fldu. (1.27)

(iv) If f € LY (1) and Ey, Es, E3, ... is a sequence of pairwise disjoint mea-
surable sets then

/fd,uzz fdp,  E:=|]JEk (1.28)
E k=1" Bk

keN

(v) For all E € A and all f € L(u)

/Efduz/xfxEdu. (1.29)

(vi) Let E € A and f € LY (). If W(E) =0 or flg =0 then [, fdu=0.

Proof. We prove (i). Let f,g € £(u) and ¢ € R. Then f+g € L£*(u) because
|f + gl < |f] + 9| and hence [, |f + g|du < oo by part (i) of Theorem.
Likewise, cf € L£'(u) because |cf| = |c||f| and hence [y|cf|dp < oo by
part (vi) of Theorem [I.35] To prove the second equation in assume
first that ¢ > 0. Then (cf)* = c¢f* and hence

/chdy _ /ch+dlz—/JECf_d/L
= C/Ef+d,u—c[Efd,u
- c/Efdu.

Here the second equation follows from part (vi) of Theorem Ife<O
then (cf)t = (—¢)f~ and (¢f)” = (—¢)fT and hence, again using part (iv)
of Theorem [1.35] we obtain

[ECfdu = [E(—C)fdu—[E(—C)ﬁdu
= (—@/Ef‘du—(—C)/Eﬁdu

= C/Efdp.
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Now let h:= f+g¢g. Then h* —h™ = fT — f~ 4+ ¢g" — g~ and hence
Rt +f +g =h  +fT+g".

Hence it follows from part (i) of Theorem that

/h+du+/f_du+/g_d,u:/h_d,u—k/fJ“dy—F/gJ’d,u.
E E E E E E

Hence
/hdu:/fﬁd,u /hd,u
E
= /f+d,tt+/ 9" du— /f dp — /g‘du
E
= /fdu+/gdu
E E

and this proves (i).

We prove (ii). Thus assume f = f* — f~ < g=g"— g on E. Then
ft49 <gt+f on E and hence [,(f"+g7)du < [,(¢" + f7)du by
part (i) of Theorem [1.35] Now use the additivity of the integral in part (i)
of Theorem [L.3§ to obtain

/f*dqu/gduS/g*dqu/fdu-
E E E E

This implies (|1.26]).
We prove (iii). Since —|f| < f < |f| it follows from ([1.25)) and (1.26)

that
/|f\du [tmans [ san< [ i1dn

and this implies (|1 .

We prove (iv). Equation holds for f* by part (iii) of Theoremm
and hence holds for f by definition of the integral in Definition [1.43]

We prove (v). The formula [, fdu = [, fxgdu in follows from
part (ii) of Theorem [1.35]since f*xp = (fxr)*.

We prove (vi). If f vanishes on F then f* also vanish on E and hence
S [= dpp = 0 by part (iii) of Theorem . If w(E) = 0 then [, f*dp=0Dby
part (iv) of Theorem [1.35 In either case it follows from the definition of the
integral in Definition that [, fdp = 0. This proves Theorem [1.44] [
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Theorem 1.45 (Lebesgue Dominated Convergence Theorem).
Let (X, A, p) be a measure space, let g : X — [0,00) be an integrable function,
and let f, : X — R be a sequence of integrable functions satisfying

|fnu(2)] < g(x) for allz € X and n € N, (1.30)

and converging pointwise to f : X — R, 1.e.
f(x) = 71113010 ful(z) forall z € X. (1.31)
Then f is integrable and, for every E € A,
/ fdu= lim [ f,du. (1.32)
E n—=oJE

Proof. f is measurable by part (ii) of Theorem and |f(x)| < g(z) for all
z € X by (1.30) and (1.31)). Hence it follows from part (i) of Theorem [I.35]

that
/Iflduﬁ/gdu<oo
X X

and so f is integrable. Moreover

[fo = fI < [fal + 1] < 29.

Hence it follows from the Lemma of Fatou (Theorem [1.41]) that

/2gdu = /hrginf@g—!fn—fI)du
X X n oo
< timint [ (29~ 1fa f1) do
X

n—oo

= liminf (/ 29du—/|fn—f|du>

= /2gdu—limsup/|fn—f!du-
X n—00 X

Here penultimate step follows from part (i) of Theorem m This implies

iimsup [ [, ~ fldu < 0.
X

n—o0
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Hence

i [ 12— fldn =0
n—oo X

i — /fdu'S/Ifn—f\dué/len—fldu

by part (iii) of Theorem it follows that

Since

i | [ g [ s o,
which is equivalent to (1.32)). This proves Theorem [L.45] O

1.5 Sets of Measure Zero

Assume throughout this section that (X, .4, 1) is a measure space. A set of
measure zero (or null set) is a measurable set N € A such that u(N) = 0.
Let & be a name for some property that a point x € X may have, or not
have, depending on x. For example, if f : X — [0,00] is a measurable
function on X, then & could stand for the condition f(z) > 0 or for the
condition f(z) = 0 or for the condition f(z) = co. Orif f, : X — R
is a sequence of measurable functions the property & could stand for the
statement “the sequence f,(x) converges”. In such a situation we say that
Z holds almost everywhere if there exists a set N C X of measure zero
such that every element z € X \ N has the property 2. It is not required
that the set of all elements z € X that have the property & is measurable,
although that may often be the case.

Example 1.46. Let f, : X — R be any sequence of measurable functions.
Then the set

E = {x € X|(fu(z))r, is a Cauchy sequence}

AU N {ze Xl - )l <27

keNngeNn,m>ng

is measurable. If N := X \ F is a set of measure zero then f, converges
almost everywhere to a function f : X — R. This function can be chosen
measurable by defining f(z) := lim,,_,o fu(x) for x € E and f(x) := 0 for
x € N. This is the pointwise limit of the sequence of measurable functions
gn = faxe and hence is measurable by part (ii) of Theorem [1.24]
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The first observation is that every nonnegative function with finite inte-
gral is almost everywhere finite.

Lemma 1.47. Let f : X — [0,00] be a measurable function. If [, fdu < oo
then f < oo almost everywhere.

Proof. Define N :={z € X | f(z) = 0o} and h := coxn. Then h < f and so
cop(N) = [y hdp < [y fdp < oo by Theoremﬂ. Hence u(N)=0. O

The second observation is that if two integrable, or nonnegative measur-
able, functions agree almost everywhere, then their integrals agree over every
measurable set.

Lemma 1.48. Assume either that f, g : X — [0, 00] are measurable functions
that agree almost everywhere or that f,g : X — R are p-integrable functions
that agree almost everywhere. Then

/ fdu= / gdpu for all A € A. (1.33)
A A

Proof. Fix a measurable set A € A and define N := {z € X | f(z) # g(x)}.
Then N is measurable and u(N) = 0 by assumption. Hence u(ANN) =0
by part (iii) of Theorem [1.28] This implies

[rau= | faws [ pan= [ gdu= [ peadn

A A\N ANN A\N D'

Here the first equation follows from part (iii) of Theorem in the non-
negative case and from part (iv) of Theorem in the integrable case.
The second equation follows from part (iv) of Theorem in the non-
negative case and from part (vi) of Theorem in the integrable case.
The third equation follows from part (ii) of Theorem in the nonnega-
tive case and from part (v) of Theorem in the integrable case. Since
fxaw = gxaw it follows that the integrals of f and g over A agree. This
proves Lemma [T.48] O

The converse of Lemma fails for nonnegative measurable functions.
For example, if X is a singleton and p(X) = oo then the integrals of any two
positive functions agree over every measurable set. However, the converse of
Lemma does hold for integrable functions. Since the difference of two
integrable functions is again integrable, it suffices to assume g = 0, and in
this case the converse also holds for nonnegative measurable functions. This
is the content of the next lemma.
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Lemma 1.49. Assume either that f : X — [0,00] is measurable or that
f X — R s p-integrable. Then the following are equivalent.

(i) f =0 almost everywhere.

(if) [, fdp =0 forall Ac A.

(i) [l dii = 0.

Proof. That (i) implies (ii) is the content of Lemma [1.48] That (ii) im-
plies (iii) is obvious in the nonnegative case. In the integrable case define

At ={z e X| f(z) >0}, A" :={z e X|f(x) <0}.
Then f™ = fxa+ and f~ = —fxa- by (1.24). Hence

/lelduzfxﬁdqu/Xf‘du:/A+fdu—/_fdu=o

by Theorem and (ii).
It remains to prove that (iii) implies (i). Let f : X — [0,00] be a
measurable function such that [ + /= 0 and define the measurable sets

A, ={zeX|f(z)>27"} for n € N.
Then
27" u(Ay) =/ 27"Xa, dp S/ fdu=0
X X
for all n € N by Theorem [1.35] Hence p(A,) = 0 for all n € N and so

Ni={re X[ fa)#0} = J A,

is a set of measure zero. In the integrable case apply this argument to the
function |f|: X — [0,00). This proves Lemma [1.49] O

Lemma 1.50. Let f € L(u). Then
/ fdu‘ ~ [ 1#1du (1.34)
X X
if and only if f = |f| almost everywhere or f = —|f| almost everywhere.

Proof. Assume (1.34). Then Jx fdpw= [ |flduor [ fdu=— [;|fldu. In
the first case [, (|f| — f)dp =0 and so |f| — f = 0 almost everywhere by
Lemma In the second case [ (|f|+ f)dp =0 and so |f|+ f = 0 almost
everywhere. This proves Lemma [1.50] O
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Definition 1.51 (The Banach Space L'(u)). Define an equivalence rela-
tion on the real vector space of all measurable functions from X to R by

ef, the set {x € X | f(z) # g(x)}

o
f~g has measure zero. (1.35)

Thus two functions are equivalent iff they agree almost everywhere. (Verify
that this is an equivalence relation!) By Lemma the subspace L(p) is
invariant under this equivalence relation, i.e. if f,g: X — R are measurable,
feL(w), and f X g then g € LY(u). Moreover, the set {f € L'(u) | f & 0}

is a linear subspace of LY(u) and hence the quotient space

L) = LY (p) [~
is again a real vector space. It is the space of all equivalence classes in L' ()

under the equivalence relation (1.35). Thus an element of L*(u) is not a
function on X but a set of functions on X. By Lemma[l.48 the map

() %R:fH/If\du .
X

takes on the same value on all the elements in a given equivalence class and
so descends to the quotient space L'(u). By Lemma it defines a norm
on L'(u) and Theorem below shows that L'(u1) is a Banach space with
this norm (i.e. a complete normed vector space).

Theorem 1.52 (Convergent Series of Integrable Functions).
Let (X, A, ) be a measure space and let f, : X — R be a sequence of
w-integrable functions such that

Z/X|fn|d,u < 0. (1.36)
n=1

Then there is a set N of measure zero and a function f € LY(u) such that

io:|fn(a:)| <oo and f(x)= ifn(:v) forallz € X\ N, (1.37)
n=1 n=1
/Afdu = niog /A frdu for all A € A, (1.38)

JL%/)()f—;fk’dﬂzo. (1.39)
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Proof. Define
¢(x) =Y | fl@)|
k=1

for x € X. This function is measurable by part (ii) of Theorem |1.24] More-
over, it follows from the Lebesgue Monotone Convergence Theorem [1.37 and
from part (i) of Theorem that

/aﬁduzr}ggo/ Z|fk|dﬂznlij202/|fk|dN:Z/|fk|dﬂ<oo-
X X k=1 k=17X k=17 X

Hence the set N := {z € X |¢(z) = oo} has measure zero by Lemma [1.47]
and Y oo |fe(x)| < oo for all z € X \ N. Define the function f: X — R by
f(z) :=0 for z € N and by

fl@) =Y filz) forzeX\N.
k=1
Then f satisfies ([1.37)). Define the functions g : X — R and ¢, : X — R by
g = OXX\N, Gn = kaXX\N for n € N.
k=1

These functions are measurable by part (i) of Theorem Moreover,

Jx9dp = [ ¢du < oo by Lemma Since |g,(z)| < g(z) for all n € N
and g, converges pointwise to f it follows from the Lebesgue Dominated

Convergence Theorem that f € £L'(u) and, for all A € A,

fdu= lim/gndu: lim/ fedp = /fnd,u.

Here the second step follows from Lemma because g, = > p_, [ almost
everywhere. The last step follows by interchanging sum and integral, using
part (i) of Theorem [1.44] This proves (1.38). To prove equation (1.39) note
that f—>;_, f» = [ — gn almost everywhere, that f(z)—g,(x) converges to

zero for all z € X, and that | f—g,| < |f|+¢g where | f|+g is integrable. Hence,
by Lemma [1.48| and the Lebesgue Dominated Convergence Theorem [1.45

i [ |£ =34 du = fim [ 17 = guldu =0,
This proves (1.39) and Theorem [L.52] O
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Theorem 1.53 (Completeness of L'). Let (X, A, u) be a measure space
and let f, € LY(n) be a sequence of integrable functions. Assume f, is a
Cauchy sequence with respect to the L'-norm, i.e. for every € > 0 there is an
ng € N such that, for all m,n € N,

n,m > ng = / |fo — fml du < e. (1.40)
X
Then there exists a function f € L'(u) such that
lim [ |f,— fldu=0. (1.41)
*Jx

Moreover, there is a subsequence f,, that converges almost everywhere to f.

Proof. By assumption there is a sequence n; € N such that

Jy

Then the sequence g; = fn,,, — fao, € L'(p) satisfies (1.36). Hence, by
Theorem there exists a function g € £'(u) such that

dp < 277, n; < N1, for all = € N.

o

g = Zgi = Z(fm+1 - fnz)

i=1
almost everywhere and

k—1

0=k}ggO/X’Zgi—g‘du=]}ggO/X\fnk—fm—g!du- (1.42)

i=1
Define
f = fnl +g.

Then f,, = fn, —1—23;11 g; converges almost everywhere to f. We prove .
Let € > 0. By there is an ¢ € N such that [ |f,, — f|du < /2 for all
k> /. By the integer ¢ can be chosen such that [y |f, — fu| dp < e/2
for all n,m > n,. Then

St = fldus [ 1= s [ 1= fldu <

for all n > n,. This proves (1.41)) and Theorem [1.53] O
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1.6 Completion of a Measure Space

The discussion in Section shows that sets of measure zero are negligible
in the sense that the integral of a measurable function remains the same if
the function is modified on a set of measure zero. Thus also subsets of sets
of measure zero can be considered negligible. However such subsets need not
be elements of our g-algebra A. It is sometimes convenient to form a new
o-algebra by including all subsets of sets of measure zero. This leads to the
notion of a completion of a measure space (X, A, u).

Definition 1.54. A measure space (X, A, 1) is called complete if
NeA, wN)=0, ECN = Eec A
Theorem 1.55. Let (X, A, ) be a measure space and define

A {E c X ’ there exist measurable sets A, B € A such that } '

ACECBand w(B\ A) =0

Then the following holds.
(i) A* is a o-algebra and A C A*.
(ii) There exists a unique measure p* : A* — [0, 00] such that

frla = p.

(iii) The triple (X, A*, u*) is a complete measure space. It is called the
completion of (X, A, ).

(iv) If f : X — R is p-integrable then f is p*-integrable and, for E € A,

/Efdu*:/Efdu (1.43)

This continues to hold for all A-measurable functions f : X — [0, o0].

V) If f*: X —>_R is A*-measurable then there exists an A-measurable
function f : X — R such that the set

N :={ee X[f(x) # ["(z)} € A

has measure zero, i.e. p*(N*) = 0.
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Proof. We prove (i). First X € A* because A C A*. Second, let £ € A*
and choose A,B € A such that A C £ C B and pu(B \ A) = 0. Then
B¢ C E° C A®and A°\ B = A°N B = B\ A. Hence u(A¢\ B¢) = 0 and
so B¢ € A*. Third, let E; € A* for i € N and choose A;, B; € A such that
A; C E; C By and pu(B; \ A;) = 0. Define

A=A, E=|JE, B=JB:
Then AC EC Band B\ A=J,(B; \ 4) C U,(B; \ 4;). Hence

n(B\A) < ZM(Bz‘\Az') =0

and this implies E € A*. Thus we have proved (i).
We prove (ii). For E € A* define

A, Be A,
W (E) = p(A) where ACEFECB, (1.44)
u(B\ A) =0.

This is the only possibility for defining a measure p* : A* — [0,00] that
agrees with p on A because u(A) = u(B) whenever A, B € A such that
A C B and pu(B\ A) = 0. To prove that p* is well defined let £ € A* and
A, B e Aasin (L44). If A', B’ € A is another pair such that A’ C E C B
and u(B"\ A’) =0, then A\ A’ C E\ A" C B"\ A’ and hence u(A\ A") = 0.
This implies p(A) = p(AN A") = p(A’), where the last equation follows
by interchanging the roles of the pairs (A, B) and (A’, B’). Thus the map
pw*: A* — [0, 00] in is well defined.

We prove that p* is a measure. Let E; € A* be a sequence of pairwise
disjoint sets and choose sequences A;, B; € A such that A; C E; C B; for
all i. Then the A; are pairwise disjoint and p*(E;) = u(A;) for all i. Moreover
A=A ecA B:=J,B,e A, ACEC B, and u(B\ A) =0 as we have
seen in the proof of part (i). Hence p*(E) = pu(A) = >, n(Ai) = >, ' (£;).
This proves (ii).

We prove (iii). Let E € A* such that p*(F) =0 and let E’ C E. Choose
A,B € A such that AC EC B and u(B\ A) =0. Then u(A) = p*(E) =0
and hence p(B) = u(A)+u(B\ A) =0. Since £’ C E C B, this implies that
E’ € A* (by choosing B’ := B and A’ := ()). This shows that (X, A*, u*) is
a complete measure space.
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We prove (iv). Assume f : X — [0,00] is A-measurable. By Theo-
rem there exists a sequence of A-measurable step functions s, : X — R
such that 0 < 57 < 9 < -+ < f and f(x) = lim, o sp(x) for all z € X.
Since p1*|4 = p we have [, s,dp = [, s, dp* for all n and hence it follows
from the Lebesgue Monotone Convergence Theorem for both p and p*

that
/fduzlim/sndu:hm sndu*:/fdu*.
This proves for E = X and all A-measurable functions f : X — [0, oo].
To prove it for all E replace f by fxg and use part (ii) of Theorem m This
proves equation for all A-measurable functions f : X — [0, 00]. That
it continues to hold for all f € L(u) follows directly from Definition
This proves (iv).
We prove (v). If f* = xg for E € A*, choose A, B € A such that

ACFECB, u(B\ A) =0,
and define f := x4. Then
N*={ze X|f(x) # f(x)} =E\AC B\ A

Hence p*(N*) < p*(B\ A) = w(B\ A) = 0. This proves (v) for charac-
teristic functions of A*-measurable sets. For A*-measurable step functions
the assertion follows by multiplication with real numbers and taking finite
sums. Now let f* : X — [0,00] be an arbitrary A*-measurable function.
By Theorem there exists a sequence of A*-measurable step functions
st X — [0,00) such that s converges pointwise to f*. For each i € N
choose an A-measurable step function s; : X — [0,00) and a set N} € A*
such that s; = sf on X \ N/ and p*(V;) = 0. Then there is a sequence of sets
N; € A such that N C N; and p(N;) = 0 for all 4. Define f : X — [0, 00] by

=0 ey v=UN

Then N € A, u(N) = 0, and the sequence of A-measurable functions s;x x\n
converges pointwise to f as i tends to infinity. Hence f is A-measurable
by part (ii) of Theorem and agrees with f* on X \ N by definition.
Now let f*: X — R be A*-measurable. Then so are (f*)* := max{%f*,0}.
Construct f*: X — [0,00] as above. Then f~(z) = 0 whenever f*(z) > 0
and vice versa. Thus f := f* — f~ is well defined, A-measurable, and agrees
with f* on the complement of a p-null set. This proves Theorem [[.55 [
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Corollary 1.56. Let (X, A, p) be a measure space and let (X, A*, u*) be its
completion. Denote the equivalence class of a p-integrable function f € L' (u)

under the equivalence relation (1.35)) in Definition by
flni= {9 € £400) | n(fe € X| f() # g(@)}) =0}

Then the map
LY(p) = L) = [flu = [fle (1.45)

1s a Banach space isometry.

Proof. The map (|1.45) is linear and injective by definition. It preserves
the L'-norm by part (iv) of Theorem and is surjective by part (v) of
Theorem [L.55] O

As noted in Section [I.5] sets of measure zero can be neglected when
integrating functions. Hence it is sometimes convenient to enlarge the notion
of integrability. It is not even necessary that the function be defined on all
of X, as long as it is defined on the complement of a set of measure zero.

Thus let (X, A, 1) be a measure space and call a function f : E — R,
defined on a measurable subset £ C X, measurable if (X \ E') = 0 and the
set f71(B) C F is measurable for every Borel set B C R. Call it integrable
if the function on all of X, obtained by setting f|x\g = 0, is integrable.

If (X, A, p) is complete our integrable function f: E — R can be ex-
tended in any manner whatsoever to all of X, and the extended function
on X is then integrable in the original sense, regardless of the choice of the
extension. Moreover, its integral over any measurable set A € A is unaffected
by the choice of the extension (see Lemma [1.48)).

With this extended notion of integrability we see that the Lebesgue Dom-
inated Convergence Theorem continues to hold if is replaced by
the weaker assumption that f,, only converges to f almost everywhere.

That such an extended terminology might be useful can also be seen in
Theorem m, where the series Y | f,, only converges on the complement of
a set N of measure zero, and the function f can only be naturally defined on
E := X\ N. Our choice in the proof of Theorem [1.52 was to define f|y := 0,
but this choice does not affect any of the statements of the theorem. More-
over, when working with the quotient space L'(u) = L£'(u)/~ we are only
interested in the equivalence class of f under the equivalence relation ([1.35))
rather than a specific choice of an element of this equivalence class.
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1.7 Exercises

Exercise 1.57. Let X be an uncountable set and let A C 2X be the set of
all subsets A C X such either A or A° is countable. Define

(A) = 0, if A is countable,
pRA) = 1, if A°is countable,

for A € A. Show that (X, A, i) is a measure space. Describe the measurable
functions and their integrals. (See Examples [1.4] and [1.32])

Exercise 1.58. Let (X, A, ) be a measure space such that u(X) < oo and
let f, : X — [0,00) be a sequence of bounded measurable functions that
converges uniformly to f: X — [0,00). Prove that

/){fduzgin;o/)(fndu. (1.46)

Find an example of a measure space (X, A, 1) with u(X) = oo and a sequence
of bounded measurable functions f,, : X — [0, 00) converging uniformly to f
such that ((1.46)) does not hold.

Exercise 1.59. (i) Let f, : [0,1] — [—1,1] be a sequence of continuous
functions that converges uniformly to zero. Show that

1

lim [ fu(z)dz =0.
0

n—oo

(ii) Let f,, : [0,1] — [—1,1] be a sequence of continuous functions such that

lim f,(z) =0  forall x € [0,1].

n—0o0

Prove that .

lim [ fu(z)dz =0,
0

n—oo

without using Theorem [1.45] A good reference is Eberlein [3].

(iii) Construct a sequence of continuous functions f, : [0,1] — [—1, 1] that
converges pointwise, but not uniformly, to zero.

(iv) Construct a sequence of continuous functions f, : [0,1] — [—1,1] such
that fol fn(z)dx =0 for all n and f,(z) does not converge for any = € [0, 1].
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Exercise 1.60. Let (X, A, 1) be a measure space and f : X — [0, 00] be a
measurable function such that 0 < ¢:= [ « fdp < oo. Prove that

fo oo, ifa<l,
lim nlog (1+—a) du=<¢ ¢, fa=1, for 0 < a < .
neeJx " 0, ifa>1,

Hint: The integrand can be estimated by af when o > 1.

Exercise 1.61. Let X := N and A := 2% and let p : 2 — [0, 00| be the
counting measure (Example [1.30). Prove that a function f : N — R is p-
integrable if and only if the sequence (f(n)),en of real numbers is absolutely
summable and that in this case

/Nfduz if(n)-

Exercise 1.62. Let (X,.A) be a measurable space and let p, : A — [0, o0]
be a sequence of measures. Show that the formula

u(A) = in(A)

for A € A defines a measure p : A — [0, 00]. Let f: X — R be a measurable
function. Show that f is p-integrable if and only if

> [ Ul < oc.
n=1 X

If f is p-integrable prove that

/deuzg/xfdun-

Exercise 1.63. Let (X, A, 1) be a measure space such that u(X) < oo and
let f: X — R be a measurable function. Show that f is integrable if and
only if

S lul{z € X |1f(@)] > n})] < oc.
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Exercise 1.64. Let (X, A, 1) be a measure space and let f: X — R be a
p-integrable function.

(i) Prove that for every € > 0 there exists a 0 > 0 such that, for all A € A,

mAfdu

(ii) Prove that for every € > 0 there exists a measurable set A € A such

that, for all B € A,
[ ran- | fan
X B

Exercise 1.65. Let (X,.A) be a measurable space and define

o, ifA=0,
’M(A)'_{oo, if Ae Aand A # (.

u(A) <o = <e.

Hint: Argue indirectly. See Lemma [5.21

BD>A = < e.

Determine the completion (X, A*, u*) and the space L*(u).

Exercise 1.66. Let (X, A, 1) be a measure space such that u = J,, is the
Dirac measure at some point 2o € X (Example |1.31]). Determine the com-
pletion (X, A*, u*) and the space L'(p).

Exercise 1.67. Let (X,A, ) be a complete measure space. Prove that

(X, A, u) is equal to its own completion.

Exercise 1.68. Let (X, A, ) and (X, A, /) be two measure spaces with
AC A and /|4 = p. Prove that £'(u) € £(y/) and

/deuzfxfdu’

for every f € £'(u). Hint: Prove the following.
(i) Let f: X — [0,00] be A-measurable and define

0. s <a
fs(z) =< f(x), ifd< f(z) <Y
5L f(a) > 6L
Then f5 is A-measurable for every § > 0 and lims_g [ fsdp = [, fdp.

(ii) Let 0 < ¢ < o0, let f: X — [0, ] be A-measurable, and assume that
p{z e X | f(x) >0}) < oo. Then [, fdu = [, fdy'. (Consider also the
function ¢ — f.)
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Exercise 1.69 (Pushforward of a Measure).
Let (X, A, 1) be a measure space, let Y be a set, and let ¢ : X — Y be a
map. The pushforward of A is the o-algebra

pA:={BCY|¢p ' (B)e A} C2". (1.47)
The pushforward of x is the function ¢.u : ¢..A — [0, 00] defined by
(Gup0)(B) = u(¢~'(B)),  for B € ¢.A. (1.48)

(i) Prove that (Y, ¢.A, ¢.p) is a measure space.

(ii) Let (X, .A*, u*) be the completion of (X, A, 1) and let (Y, (¢«.A)*, (¢dupt)*)
be the completion of (Y, ¢..A, ¢.pt). Prove that

()" (B) = p*(¢~(E))  forall E € (4.A)" C pA”. (1.49)

Deduce that (Y, ¢.A, ¢.p) is complete whenever (X, A, ) is complete. Find
an example where (¢, A)* C ¢, A*.

(iii) Fix a function f : Y — [0, 00]. Prove that f is ¢..A-measurable if and
only if f o ¢ is A-measurable. If f is ¢, A-measurable, prove that

[ s = [ (roo)dn (1.50)
Y b
(iv) Determine the pushforward of (X, A, 1) under a constant map.

The following extended remark contains a brief introduction to some of
the basic concepts and terminology in probability theory. It will not be used
elsewhere in this book and can be skipped at first reading.

Remark 1.70 (Probability Theory). A probability space is a measure
space (2, F, P) such that P(£2) = 1. The underlying set {2 is called the sam-
ple space, the o-algebra F C 2 is called the set of events, and the measure
P :F —[0,1] is called a probability measure. Examples of finite sample
spaces are the set {2 = {h,t} for tossing a coin, the set Q2 ={1,2,3,4,5,6}
for rolling a dice, the set Q = {00,0,1,...,36} for spinning a roulette wheel,
and the set Q ={2,...,10,j,q9,k,a} x {$, O, &, &} for drawing a card from
a deck. Examples of infinite sample spaces are the set Q@ = N U {oo} for
repeatedly tossing a coin until the first tail shows up, a compact interval of
real numbers for random arrival times, and a disc in the plane for throwing
a dart.
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A random variable is an integrable function X : ) — R. Its expecta-
tion £(X) and variance V(X)) are defined by

/ XdP,  V(X) = /(X _ B(X))2dP = E(X?) — E(X).

Given a random variable X : {2 — R one is interested in the value of the prob-
ability measure on the set X '(B) for a Borel set B C R. This value is the
probability of the event that the random variable X takes its value in the set B
and is denoted by P(X € B) := P(XY(B)) = (X.P)(B). Here X, P denotes
the pushforward of the probability measure P to the Borel o-algebra B C 28
(Exercise [1.69). By the expectation and variance of X are given by
E(X) = [rxd(X,P)(z) and V(X) = [p(z — E(X))*d(X,.P)(z).

The (cumulative) distribution function of a random variable X is
the function Fy : R — [0, 1] defined by

Fx(z) := P(X <z) = P({w € Q[ X(w) < z}) = (X, P)((—00,2]).
It is nondecreasing and right continuous, satisfies

lim Fx(z) =0, lim Fx(z) =1,
Tr——00 T—r00

and the integral of a continuous function on R with respect to the pushfor-
ward measure X, P agrees with the Riemann-Stieltjes integral (Exercise[6.20))
with respect to Fx. Moreover,

Fx(z) — tlim Fx(t) = P(X !(x))

—T

by Theorem [1.28] Thus Fx is continuous at z if and only if P(X~!(z)) = 0.
This leads to the following notions of convergence. Let X : 2 — R be a
random variable. A sequence (X;);en of random variables is said to
converge in probability to X if lim; ,,, P(|X; — X| > ¢) =0 for all € > 0,
converge in distribution to X if Fx(z) = lim,;_, Fx,(x) for every z € R
such that F'x is continuous at x.

We prove that convergence almost everywhere implies convergence in
probability. Let & > 0 and define A; := {w € Q|| X;(w) — X(w)| > €}. Let
E C Q be the set of all w € Q such that the sequence X;(w) does not con-
verge to X(w). This set is measurable by Example and has measure

zero by convergence almost everywhere. Moreover, ﬂzeN U;>i 4 C E and so
lim; 00 P(U;; 4;) = P(E) = 0 by Theorem [1.28§] _ Thus hmHOO P(A;) =0.
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We prove that convergence in probability implies convergence in distri-
bution. Let x € R such that F'x is continuous at z. Let ¢ > 0 and choose
6 > 0 such that Fx(l’) — % < FX(JI — 5) < Fx(I + 5) < Fx(l’) + %
Now choose iy € N such that P(|X; — X| > §) < § for all i > 4g. Then
Fx(x —0) — P(|X; — X| > 0) < Fx,(x) < Fx(z +6) + P(|X; — X| > 9)
and hence Fx(x) —e < Fx,(z) < Fx(x) + ¢ for all i > 4. This shows that
lim; o Fx,(z) = Fx(z) as claimed.

A finite collection of random variables X1, ..., X, is called independent
if, for every collection of Borel sets By, ..., B, C R, it satisfies

P(Q X;l(Bi)) = i]jp (X;(By) -

In Chapter[7]we shall see that this condition asserts that the pushforward of P
under the map X := (Xy,...,X,) : Q@ — R" agrees with the product of the
measures (X;),P. Two foundational theorems in probability theory are the
law of large numbers and the central limit theorem. These are results about
sequences of random variables X}, : {0 — R that satisfy the following.

(a) The random variables X7, ..., X, are independent for all n.

(b) The X} have expectation E(Xj) = 0.

(c) The X} are identically distributed, i.e. F'x, = F, for all k and /.
For n € N define S,, := X; + --- 4+ X,,. Kolmogorov’s strong law of large
numbers asserts that, under these assumptions, the sequence S, /n con-
verges almost everywhere to zero. (This continues to hold when (c) is re-
placed by the assumption Y7, V(X)) < 00.) If, in addition, V(X}) = o?
for all £ and some positive real number ¢ then the central limit theorem
of Lindeberg—Lévy asserts that the sequence T, := S,,/o+/n converges in dis-
tribution to a so-called standard normal random wvariable with expectation
zero and variance one, i.e. lim,, o, Fr, (z) = \/%7 I e~ /2dt for all z € R.
The hypotheses listed above are quite restrictive and in modern probabil-
ity theory these theorems are often needed in much greater generality. For
proofs, many examples, and comprehensive expositions of probability theory
see Ash [I], Fremlin [4, Chapter 27], Malliavin [13].

An important class of random variables are those where the distribution
functions Fx : R — [0,1] are absolutely continuous (Theorem [6.19)). This
means that the pushforward measures X,P on the Borel o-algebra B C 28
admit densities as in Theorem with respect to the Lebesgue measure.
The Lebesgue measure is introduced in Chapter [2| and the existence of a
density is the subject of Chapter [5| on the Radon—Nikodym Theorem.



Chapter 2

The Lebesgue Measure

This chapter introduces the most important example, namely the Lebesgue
measure on Euclidean space. Let n € N and denote by B C 28" the o-algebra,
of all Borel sets in R", i.e. the smallest o-algebra on R™ that contains all open
sets in the standard topology (Definition [I.15]). Then

B+az:={y+x|lyeB}eB  foral BeBandall zeR"

because the translation R® — R" : y — y + z is a homeomorphism. A
measure 4 : B — [0, 00] is called translation invariant if it satisfies

w(B+x) = u(B) for all B € B and all x € R". (2.1)

Theorem 2.1. There ezists a unique measure j : B — [0, 00| that is trans-
lation invariant and satisfies the normalization condition u([0,1]") = 1.

Proof. See page [64] O

Definition 2.2. Let (R™, B, u) be the measure space in Theorem and
denote by (R™, A, m) its completion as in Theorem[1.58 Thus

there exist Borel sets By, By € B (2.2)
such that By C A C By and (B \ By) =0 '

and m(A) := p(By) for A € A, where By, By € B are chosen such that
By C AC By and pu(By \ By) = 0. The elements of A are called Lebesgue
measurable subsets of R", the function m : A — [0,00] is called the
Lebesgue measure, and the triple (R™, A, m) is called the Lebesgue mea-
sure space. A function f : R"™ — R s called Lebesgue measurable if it
is measurable with respect to the Lebesgue o-algebra A on R™ (and the Borel
o-algebra on the target space R).

A::{ACR”

49
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2.1 Outer Measures

In preparation for the proof of Theorem we now take up the idea, an-
nounced in the beginning of Chapter|[l], of assigning a measure to every subset
of a given set but requiring only subadditivity. Here is the basic definition.

Definition 2.3. Let X be a set. A function v : 2% — [0,00] is called an
outer measure if it satisfies the following three axioms.

(a) v(0) =0.

(b) If AC B C X then v(A) <v(B).

(c) If A; C X forie N thenv (U, Ai) <> o2 v(A4).

Let v : 2X — [0,00] be an outer measure. A subset A C X is called v-
measurable if it satisfies

v(D)=v(DNA)+v(D\ A) (2.3)
for every subset D C X.

The inequality v(D) < v(DNA)+v(D\ A) holds for every outer measure
and any two subsets A, D C X by (a) and (c). However, the outer measure
of a disjoint union need not be equal to the sum of the outer measures.
Carathéodory’s Theorem below asserts that the v-measurable sets form
a o-algebra A and that the restriction of v to A is a measure. Theorem [2.5
(the Carathéodory Criterion) characterises outer measues v on metric spaces
such that every Borel set is v-measurable.

Theorem 2.4 (Carathéodory). Let X be a set, let v : 2% — [0, 00] be an
outer measure, and define

A= A(v):= {AC X|A is v-measurable} (2.4)
Then A is a o-algebra, the function
pe=vla: A—[0,00]
is a measure, and the measure space (X, A, ) is complete.
Proof. The proof has six steps.
Step 1. X € A.
For every subset D C X, we have

v(DNX)+v(D\ X)=v(D)+v0) =v(D)
by condition (a) in Definition [2.3] Hence X € A.
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Step 2. If A € A then A° € A.
Let A € A. Since
DNA°=D\ A, D\ A°=DnNA,
it follows from equation (2.3) that v(D) = v(D N A°) +v(D \ A°) for every
subset D C X. Hence A° € A.
Step 3. If A,Be€ A then AUB € A.
Let A, B € A. Then, for every subset D C X,
v(D) = v(DNA)+v(D\A)

v(DNA)+v(Dn A
v(DNA) +v(DNANB)+v(DNA°\ B)

(

(

v

v(DNA)YU(DNA“NB))+v(DNANB°
= v(DN(AUB))+v(DN(AUB))
= v(DN(AUB))+v(D\ (AU B)).
Here the inequality follows from axioms (a) and (c) in Definition 2.3} Using

axioms (a) and (c) again we obtain v(D) = v(DN(AUB))+v(D\ (AUB))
for every subset D C X and hence AU B € A.

Step 4. Let A; € A for i € N such that A;NA; =0 fori # j. Then

o0

A= GA,- €A v(A) =) ().

i=1 =1

For k € N define
Bk Z:A1UA2U'-'UAk.

Then B € A for all k£ € N by Step 3. Now let D C X. Then, for all £ > 2,

V(DﬂBk) = V(DﬂBkﬂAk)—l—V((DﬂBk)\Ak)
= v(DNA) +v(DNBy_q)

and so, by induction on k,
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Since By € A, this implies

v(D)=v(DNBy)+v(D\ By)

=> u(DNA)+v(D\ B

> v(DNA)+v(D\A).

Here the last inequality follows from axiom (b) in Definition 2.3} Since this
holds for all k € Nand DN A =J;,(DNA4,), it follows that

> v(DNA)+v(D\A) > v(DNA)+v(D\ A) > v(D).
1=1
Here the last two inequalities follow from axiom (c). Hence
D)=) v(DNA)+v(D\A) =v(DNA)+v(D\A) (2.5)
i=1

for all D C X. This shows that A € A. Now take D = A to obtain D\ A = ()
and DN A; = A;. Then it follows from (2.5) that v(A) = > "7 v(A;).

Step 5. Let A; € A fori e N. Then A==, A; € A.
Define Bl = Al and Bz = Az \ (Al U--- UAi—l) for i Z 2. Then BzﬂB] = @

fori # jand B; = (A1 U---UA;_1 U A € A for all i by Steps 2 and 3.
Hence A = J;2, B; € A by Step 4. This proves Step 5.

Step 6. (X, A, u) is a complete measure space.

It follows from Steps 1, 2, 4, and 5 that (X, A, u = v|4) is a measure space.
We prove that it is complete. To see this, let A C X and suppose that
A C N where N € A satisfies (N) = 0. Then it follows from axiom (b) in
Definition [2.3| that v(A) < v(N) = u(N) = 0 and therefore v(A) = 0. Now
use axioms (a), (b) and (¢) to obtain

v(D)<v(DNA)+v(D\A) <v(A)+v(D)=rv(D)

and so v(D) =v(DNA)+v(D\ A) for all D C X, which shows that A € A.
This proves Step 6 and Theorem [2.4] O
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Theorem 2.5 (Carathéodory Criterion). Let (X,d) be a metric space
and v : 2% — [0,00] be an outer measure. Let A(v) C 2% be the o-algebra
given by (2.4) and let B C 2% the Borel o-algebra of (X,d). Then the

following are equivalent.
(i) Bc A(v).
(ii) If A, B C X satisfy d(A, B) := inf,ea pep d(a,b) > 0 then

v(AU B) =v(A) +v(B).

Proof. We prove that (i) implies (ii). Thus assume that v satisfies (i). Let
A, B C X such that € := d(A, B) > 0. Define

U:={z € X|3ae Asuch that d(a,z) < e} = U B.(a).

acA

Then U is open, A C U, and UNB = (). Hence U € B C A(v) by assumption
and hence v(AUB) = v((AUB)NU)+v((AUB)\U) = v(A) +v(B). Thus
the outer measure v satisfies (ii).

We prove that (ii) implies (i). Thus assume that v satisfies (ii). We prove
that every closed set A C X is v-measurable, i.e. v(D) = v(DNA)+v(D\ A)
for all D C X. Since v(D) <v(DNA)+v(D\ A), by definition of an outer
measure, it suffices to prove the following.

Claim 1. Fiz a closed set A C X and a set D C X such that v(D) < oo.
Then v(D) > v(DNA)+v(D\ A).

To see this, replace the set D \ A by the smaller set D \ Uy, where

Uy :={z € X |3 a € Asuch that d(a,z) < 1/k} = U Biji(a).

a€A

For each k € N the set Uy is open and d(x,y) > 1/k for all x € DN A and
all y € D\ Uy. Hence

| =

By (ii) and axiom (b) this implies
v(DNA)+v(D\U) =v((DNA)U(D\U)) <v(D) (2.6)

for every subset D C X and every k € N. We will prove the following.
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Claim 2. limg_,o, v(D \ Uy) = v(D \ A).
Claim 1 follows directly from Claim 2 and ({2.6). To prove Claim 2 note that

A= ﬁUi
i=1

because A is closed. (If z € U; for all i € N then there exists a sequence
a; € A such that d(a;,x) < 1/i and hence x = lim; ,, a; € A.) This implies

U\ A= U(Uk \Ui) = U(Uz \ Ui+1)
and hence
D\A = (D\Uy)U(Dn(U\A)
= (D\UY V(DN (U Uia)).
Thus .
D\A=(D\U)UlJE,  E=([DnU)\Us. (2.7)

i—k
Claim 3. The outer measures of the E; satisfy > ;- v(E;) < oo.

Claim 3 implies Claim 2. It follows from Claim 3 that the sequence

converges to zero. Moreover, it follows from equation ({2.7) and axiom (c) in
Definition 2.3 that

V(D\A) S V(D\Uk>+ IJ(EZ) :V(D\Uk)+€k.

e

[
B

7

Hence it follows from axiom (b) in Definition [2.3| that
V(ID\A)—er, <v(D\U) <v(D\ A)

for every k € N. Since €, converges to zero, this implies Claim 2. The proof
of Claim 3 relies on the next assertion.
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Claim 4. d(E;, E;) > 0 for i > j + 2.
Claim 4 implies Claim 3. It follows from Claim 4, axiom (b), and (ii) that

ZV(E%) =V (U Egz) S V(D)

i=1 i=1

and

—

Il
—

ZV(E%A) =V (

i=1

E2i1> <wv(D)

)

for every n € N. Hence ) .2, v(E;)
Claim 4 implies Claim 3.

Proof of Claim 4. We show that

IN

2v(D) < oo and this shows that

1

B S ()

for 7 >i+ 2.

To see this, fix indices 7,7 with 7 > 7+ 2. Let x € F; and y € X such that

1

d(z,y) < m

Then x ¢ U; ;1 because E; N U;11 = 0. (See equation (2.7)).) Hence

d(a,z) > - for all a € A.
1+
This implies
d<a7y) Z d(a7 ZE) - d(]), y)
1 1
> - — = -
i+1 (i+1)(i+2)
B 1
i+2
1
> =
J

for all a € A. Hence y ¢ U; and hence y ¢ E; because £; C U;. This proves
Claim 4 and Theorem 2.5 O
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2.2 The Lebesgue Outer Measure

The purpose of this section is to introduce the Lebesgue outer measure v
on R™, construct the Lebesgue measure as the restriction of v to the o-algebra
of all v-measurable subsets of R”, and prove Theorem [2.1]

Definition 2.6. A closed cuboid in R"” is a set of the form

Q = Q(a7b)
= [ag, by] X [ag, ba] X -+ X [an, by] (2.8)
— {x:(xl,...,xn)E]R"}aj <x; <b; forjzl,...,n}

for ay, ... an,by,...,b, € R with a; < b; for all j. The (n-dimensional)
volume of the cuboid Q(a,b) is defined by

n

Vol(Q(a, b)) := Vol (Q(a, b)) == [ [ (b — a;). (2.9)

J=1

The volume of the open cuboid U := int(Q) = [, (a;, b;) is defined by

=1

Vol(U) := Vol(Q). The set of all closed cuboids in R™ will be denoted by

al,...,an,bl,...,bnGR,
a; <bj forj=1,....n '

9, = {Q<a, b

Definition 2.7. A subset A C R" is called a Jordan null set if, for every
e > 0, there exist finitely many closed cuboids Q1,...,Q, € 2, such that

l l
AclJao, Do vol@) <.
=1 =1

Definition 2.8. A subset A C R" is called a Lebesgue null set if, for
every € > 0, there is a sequence of closed cuboids Q; € 2,,, i € N, such that

AcC G Qi i\fol(@i) <e.
i=1 i=1

Definition 2.9. The Lebesgue outer measure on R" is the function
v=u,: 28" =0, 00] defined by

v(A) :=inf {i\/oln(@i)

Qic 2, AC UQZ} for ACR". (2.10)
i=1
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Theorem 2.10 (The Lebesgue Outer Measure). Let v : 28" — [0, o0]
be the function defined by (2.10)). Then the following holds.

(i) v is an outer measure.

(ii) v is translation invariant, i.e. for all A C R" and all z € R"
v(A+z) =v(A).

(iii) If A, B C R" such that d(A, B) > 0 then v(AU B) = v(A) + v(B).
(iv) v(int(Q)) = v(Q) = Vol(Q) for all Q € 2,,.

Proof. We prove (i). The empty set is contained in every cuboid @ € 2,,.
Since there are cuboids with arbitrarily small volume it follows that v(()) = 0.
If AC B C R" it follows directly from Definition[2.9|that v(A) < v(B). Now
let A; C R™ for i € N, define

A= QA“

and fix a constant € > 0. Then it follows from Definition [2.9] that, for i € N,
there exists a sequence of cuboids Q;; € 2, j € N, such that

[e.e] o0 8
AicJQy D Vol(Qy) < o ().
j=1 j=1

Hence

AacJQu X Vel@y) <) (23 +u(4)) =e+ > (A,

i,jEN i,jEN

This implies

v(A) <+ ()
i=1
for every ¢ > 0 and thus v(A) < >"°, v(A;). This proves part (i).
We prove (ii). If A C U2, Q; with Q; € 2, then A+ x C J;=,(Q; + )
for every € R™ and Vol(Q; + z) = Vol(Q;) by definition of the volume.
Hence part (ii) follows from Definition
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We prove (iii). Let A, B C R" such that d(A, B) > 0. Choose a sequence
of closed cuboids Q; € 2, such that

AuBc|JQi, D Vol(Q) <v(AUB)+e.
=1 =1

Subdividing each @); into finitely many smaller cuboids, if necessary, we may
assume without loss of generality that

d(A, B
diam(Q;) := sup |z —y| < (4, )

Here |-| denotes the Euclidean norm on R"™. Then, for every i € N, we have
either Q; N A =0 of Q; N B = (. This implies

InJ=0, I:={ieN|Q;NA# D}, J:={ieN|Q;N B # 0}.
Hence

v(A)+v(B) < ) Vol(Qi) + ) Vol(Qi)
< D Vol(@)
< ;EA UB)+e.

Thus v(A) +v(B) < v(AUB)+c¢ foralle > 0, so v(A) +v(B) <v(AUB),
and hence v(A) + v(B) = v(AU B), by axioms (a) and (c) in Definition [2.3]
This proves part (iii).

We prove (iv) by an argument due to von Neumann. Fix a closed cuboid

Q=1 x---x1I,, I; = la;, b).

We claim that
Vol(Q) < v(Q). (2.11)

Equivalently, if Q; € 2,,, i € N, is a sequence of closed cuboids then

Qc DQi —  Vol(Q) < i\/ol(@,-). (2.12)

i=1
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For a closed interval I = [a,b] C R with a < b define

lI| :==b—a.
Then
11| —1<#(INZ)<|I|+1.

Hence

N|II|-1<#(NINZ)<N|I|+1
and thus . ) ) .

- =< = IN=7Z)<|Il+ =

n-5 < y#(1ny2) <+ g

for every integer N € N. Take the limit N — oo to obtain

. 1 1

Thus

n

. 1 1
Vol(Q) = 135203,1;[1 7 (Jj N NZ)

~ i (Q n %Z”) .

N—oo N™

99

(2.13)

Now suppose Q; € 2,, i € N, is a sequence of closed cuboids such that
Q C U, Qi. Fix a constant ¢ > 0 and choose a sequence of open cuboids

U; € R™ such that

Q; c U,  Vol(U;) < Vol(Q;) + 25

Since @) is compact, and the U; form an open cover of (), there exists a

constant £ € N such that
k
QC U U,.
i=1
This implies

Lulonszr <ii# Uin ~2" <Zi#
N© N" )= &N\ NT )T &N

i=1
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Take the limit N — oo and use equation (2.13) to obtain

k

Vol(Q) < ) Vol(Ur)

i=1

(VAN INA
[ L[]
~ <
N2 | o =3
PG
S
5
C‘_’/

Since € > 0 can be chosen arbitrarily small, this proves and ([2.11)).
Thus we have proved that v(Q) < Vol(Q) < v(Q) and so v(Q) = Vol(Q).
To prove that v(int(Q)) = Vol(Q), fix a constant € > 0 and choose a closed
cuboid P € 2, such that

P C int(Q), Vol(Q) — e < Vol(P).

Then
Vol(Q) — e < Vol(P) = v(P) < v(int(Q)).

Thus Vol(Q) — € < v(int(Q)) for all £ > 0. Hence, by axiom (b),
Vol(Q) < v(int(Q)) < v(Q) = Vol(Q),
and hence v(int(Q)) = Vol(Q). This proves part (iv) and Theorem O

Definition 2.11. Let v : 28" — [0,00] be the Lebesque outer measure. A
subset A C R™ is called Lebesgue measurable if A is v-measurable, i.e.

v(D)=v(DNA)+v(D\A) for all D C R™.
The set of all Lebesgue measurable subsets of R™ will be denoted by
A= {A CR" } A is Lebesgue measumble} .

The function
m:=vls: A— 0,00
is called the Lebesgue measure on R". A function f : R" — R is called

Lebesgue measurable if it is measurable with respect to the Lebesgue o-
algebra A on R™ (and the Borel o-algebra on the target space R).



2.2. THE LEBESGUE OUTER MEASURE 61

Corollary 2.12. (i) (R",.A,m) is a complete measure space.

(i) m s translation invariant, i.e. if A € A and x € R" then A+x € A
and m(A + x) = m(A).

(iii) Every Borel set in R™ is Lebesque measurable.

(iv) If Q € 2,, then Q,int(Q) € A and m(int(Q)) = m(Q) = Vol(Q) .

Proof. Assertion (i) follows from Theorem [2.4] and part (i) of Theorem [2.10
Assertion (ii) follows from the definitions and part (ii) of Theorem [2.10
Assertion (iii) follows from Theorem [2.5| and part (iii) of Theorem [2.10] As-
sertion (iv) follows from (iii) and part (iv) of Theorem [2.10] O

The restriction of the measure m in Corollary to the Borel o-algebra
of R" satisfies the requirements of Theorem (translation invariance and
normalization) and hence settles the existence problem. The uniqueness
proof relies on certain regularity properties of the measure m which are
established in the next theorem along with continuity from below for the
Lebesgue outer measure v. Theorem shows that m is the completion of
its restriction to the Borel o-algebra of R™ and, with that at hand, we can
then prove uniqueness in Theorem

Theorem 2.13 (Regularity of the Lebesgue Outer Measure).
The Lebesque outer measure v : 28" — [0, 00| satisfies the following.

(i) For every subset A C R"

v(A) =inf {v(U)|ACU CR" and U is open} .
(ii) If A C R™ is Lebesgue measurable then

v(A) = sup {v(K) ‘ K C A and K is compact} .

(iii) If A; is a sequence of subsets of R™ such that A; C Ay for alli € N then
their union A :=J;2, A; has Lebesque outer measure v(A) = lim;_, v(4;).

Proof. We prove (i). Fix a subset A C R" and a constant € > 0. The
assertion is obvious when v(A) = co. Hence assume v(A) < oo and choose a
sequence of closed cuboids Q; € 2,, such that

Ac L_JlQ 2\/01(@) < v(A)+ %
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Now choose a sequence of open cuboids U; C R™ such that

Then U := (J;2, U; is an open subset of R" containing A and

V(U) < 3o uU) = Y Vol(U) < 3 (Vol(QZ-) + %) < v(A) +e.

This proves part (i).

To prove (ii), assume first that A C R™ is Lebesgue measurable and
bounded. Choose r > 0 so large that A C B, := {z € R"||z| <r}. Fix a
constant € > 0. By (i) there exists an open set U C R” such that B,\ A C U
and v(U) < v(B, \ A) +¢. Hence K := B, \ U is a compact subset of A and

v(K)=v(B,) —v(U) >v(B,) —v(B,\ A) —ec = v(A) —¢.

Here the first equation uses the fact that K and U are disjoint Lebesgue
measurable sets with union B, and the last equation uses the fact that A and
B, \ A are disjoint Lebesgue measurable sets with union B,.. This proves (ii)
for bounded Lebesgue measurable sets. If A € A is unbounded then
v(A) = supr(ANB,)
r>0
= supsup {v(K)|K C (AN B,) and K is compact}
r>0

= sup {v(K) ‘ K C A and K is compact} .

This proves part (ii).

We prove (iii). If v(A;) = oo for some i then the assertion is obvious.
Hence assume v(A;) < oo for all ¢ and fix a constant € > 0. By part (i) there is
a sequence of open sets U; C R" such that A; C U; and v(U;) < v(A;) +&27°
for all i. Since A; C U; N U;44 this implies

V(Ui+1 \ Ul) = V(Ui—i-l) — V(UZ N Ui—i—l) < V(Ai+1) — I/(Al> + 62_i_1
for all 7 € N. This implies

k k-1
14 (U Uz) S V<U1)+ZV(U1‘+1\UZ') < V(Ak)+€.
i=1 i=1

Take the limit & — oo to obtain v(J;o, U;) < limy_,o v(Ag) + €. Thus
V(A) < limg oo ¥(Ag) + € for all € > 0 and so v(A) < limy_,oo ¥(Ag). The

converse inequality is obvious. This proves part (iii) and Theorem O
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Theorem 2.14 (The Lebesgue Measure as a Completion).
Let v : 28" — [0,00] be the Lebesque outer measure in Definition let
m = v|ag: A — [0,00] be the Lebesgue measure, let B C A be the Borel
o-algebra of R", and define u := v|g : B — [0,00]. Then (R™, A,m) is the
completion of (R™, B, u).
Proof. Let (R™, B*, i*) denote the completion of (R, B, u).
Claim. Let A C R™. Then the following are equivalent.
(I) Ac A e v(D)=v(DNA)+v(D\A) for all D C R".
(I1) A € B*, i.e. there exist Borel measurable sets By, By € B such that
By CAC By and v(B;y \ By) = 0.
If the set A satisfies both (I) and (II) then

v(A) <v(By) =v(By) +v(B1\ By) =v(By) < v(A)

and hence m(A) = v(A) = v(By) = p*(A). This shows that A = B* and
m = p*. Thus it remains to prove the claim. Fix a subset A C R".

We prove that (II) implies (I). Thus assume that A € B* and choose Borel
measurable sets By, B; € B such that

B[)CACBh V(Bl\Bo) = 0.

Then v(A\ By) < v(B; \ By) = 0 and hence v(A\ By) = 0. Since v is an
outer measure, by part (i) of Theorem it follows from Theorem [2.4|that
A\ By € A and hence A = ByU (A\ By) € A.

We prove that (I) implies (II). Thus assume that A € A. Suppose first
that v(A) < co. By Theorem there exists a sequence of compact sets
K; C R™ and a sequence of open sets U; C R™ such that

1 1
Define

BO = GK“ Bl = ﬁ UZ
=1 i=1

These are Borel sets satisfying By C A C By and

WA — 2 < u(K) < v(By) < v(By) < v(U3) < (A

i
Take the limit ¢ — oo to obtain v(A) < v(By) < v(B;) < v(A), hence
v(By) = v(B;1) = v(A) < oo, and hence v(By \ By) = v(By) — v(By) =
This shows that A € B* for every A € A with v(A) < occ.

+
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Now suppose that our set A € A satisfies v(A) = oo and define
={recAl|ly;| <kfori=1,...,n} for ke N.

Then Ay € A and v(Ag) < (2k)" for all k. Hence A;, € B* for all k and so
there exist sequences of Borel sets By, B; € B such that By C Ay C B}, and
v(B}, \ Bi) = 0. Define B := |J;-, By and B’ := |J;, B;.. Then B, B’ € B,
BCAcC B, and

v(B'\B) <Y v(B,\B) <Y v(Bj\B)=0.

This shows that A € B* for every A € A. Thus we have proved that (I)
implies (IT) and this completes the proof of Theorem m O

Proof of Theorem [2.1. The existence of a translation invariant normalized
Borel measure on R” follows from Corollary 2.12] We prove uniqueness.
Thus assume that ¢/ : B — [0, 00| is a translation invariant measure such
that ¢/([0,1]") = 1. Define A := 1/([0,1)"). Then 0 < A < 1. We prove in
five steps that A = 1 and u/ = p.

Step 1. Forz = (xy,...,x,) and k € Ny := NU {0} define
R(x, k) =[xy, 21 +27F) x - x 2, 2, +27F).
Then p'(R(z,k)) = X277 = A\u(R(z, k)).

Fix an integer k € Ny. Since R(z, k) = R(0, k) +x for every z € R" it follows
from the translation invariance of p’ that there is a constant ¢, > 0 such that

W (R(x, k) = c for all z € R™.
Since R(z,0) can be expressed as the disjoint union
R,00= |J  R@+27"k),
(ezn,0<0;<2k 1
this implies
A=p/(R(x,0)= > p(Rx+27" k) =2"
0€Zn,0<t;<2k 1

Hence ¢, = A27"% = \u(R(z, k)). Here the last equality follows from the fact
that (0,27%)" C R(0,k) C [0,27%]" and so u(R(z,k)) = u(R(0,k)) = 27"k
by part (iv) of Corollary This proves Step 1.
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Step 2. 1/ (U) = M\u(U) for every open set U C R™.

Let U C R" be open We prove that U can be expressed as a countable union
of sets R; = R(x;, k;) as in Step 1. To see this, define

{ (z,0) }er" R(z,0) C U},
re27'Z" R(zx,1) C U,
xl)gZRVRE%O ’
. x €2°FZ", R(x, k) C U,
Ry, = {R(x,k) R(x,k)¢RVR€%0u@1U...U@k_1}

for k > 2 and denote Z := ;- , Zi. Then U can be expressed as the disjoint
union U = Jpe, R and ¢/ (R) = p(R) for all R € Z by Step 1. Hence

=Y W(R) =Y Mu(R) = Au(U)

ReZz ReZx

and this proves Step 2.
Step 3. (/(K) = Mu(K) for every compact set K C R™.

Let K C R" be compact. Choose r > 0 so large that K C U := (—r,r)".
Then U and U \ K are open. Hence, by Step 2,

p(EK) =/ (U) =/ (UN\ K) = Au(U) = Au(U\ K) = Au(K).

This proves Step 3.
Step 4. 1/ (B) = Au(B) for every Borel set B € B.
Let B € B. It follows from Step 2, Step 3, and Theorem that

W(B) < inf{y/(U)|BCUCR"and U is open}

= inf{\u(U)|B CU CR" and U is open}

Au(B)
sup {\u(K) | K C B and K is compact}
sup {¢/(K)| K C B and K is compact}
1 (B).

IN

This proves Step 4.
Step 5. A =1 and i/ = p.

By Step 4 we have A = Au([0,1]™) = ¢/(]0,1]™) = 1 and hence ' = Ay = p.
This proves Step 5 and Theorem [2.1] O
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We have given two definitions of the Lebesgue measure m : A — [0, o0o].
The first in Definition uses the existence and uniqueness of a normalized
translation invariant Borel measure p : B — [0, 00], established in Theo-
rem [2.1| and then defines (R", A, m) as the completion of that measure. The
second in Definition uses the Lebesgue outer measure v : 28" — [0, oo]
of Definition [2.9] and Theorem [2.10| and defines the Lebesgue measure as the
restriction of v to the o-algebra of v-measurable subsets of R™ (see Theo-
rem [2.4). Theorem asserts that the two definitions agree. The next
lemma uses the Axiom of Choice to establish the existence of subsets of R"
that are not Lebesgue measurable.

Lemma 2.15. Let A C R be a Lebesgue measurable set such that m(A) > 0.
Then there exists a set B C A that is not Lebesgue measurable.

Proof. Consider the equivalence relation on R defined by

T~y JELN r—yeQ
for x,y € R. By the Axiom of Choice there exists a subset £ C R which
contains precisely one element of each equivalence class. This means that E
satisfies the following two conditions.
(I) For every x € R there exists a rational number ¢ € Q such that z—q € E.
(I1) If z,y € F and o # y then 2 —y ¢ Q.
For ¢ € Q define the set

By=AN(E+q) ={rcAlz—qe E}.

Then it follows from (I) that A = J .o By-
Fix a rational number ¢ € Q. We prove that if B, is Lebesgue measurable
then m(B,) = 0. Assume B, is Lebesgue measurable, let n € N, and define

Bygyn = (B;N[=n,n])+¢ ={x+¢ |z € B, |z|] <n} forq eQ.

This set is Lebesgue measurable, its Lebesgue measure is independent of ¢/,
and B,y n N By g =0 for all ¢, ¢" € Q with ¢’ # ¢” by condition (II). Since
Bygn C [-n,n+1]for ¢" € [0,1]NQ, we have >~ /e g M(Bgg ) < 2n+ 1.
This sum is infinite and all summands agree, so m(B, N [-n,n]) = 0. This
holds for all n € N and hence m(B,;) = 0 as claimed.

If B, is Lebesgue measurable for all ¢ € Q it follows that A = qu(@ B, is
a Lebesgue null set, a contradiction. Thus one of the sets B, is not Lebesgue
measurable and this proves Lemma [2.15 O
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Remark 2.16. (i) Using Lemma one can construct a continuous func-
tion f : R — R and a Lebesgue measurable function g : R — R such that
the composition g o f is not Lebesgue measurable (see Example [6.24)).

(ii) Let £ C R be the set constructed in the proof of Lemma Then
the set £ x R C R? is not Lebesgue measurable. This follows from a similar
argument as in Lemma [2.15 using the sets ((EN[—n,n]) +¢) x [0,1]. On the
other hand, the set E x {0} C R? is Lebesgue measurable and has Lebesgue
measure zero. However, it is not a Borel set, because its pre-image in R
under the continuous map R — R? : z + (,0) is the original set E and
hence is not a Borel set.

2.3 The Transformation Formula

The transformation formula describes how the integral of a Legesgue measur-
able function transforms under composition with a C* diffeomorphism. Fix a
positive integer n € N and denote by (R", .4, m) the Lebesgue measure space.
For any Lebesgue measurable set X C R"™ denote by Ax := {A € A|A C X}
the restricted Lebesgue o-algebra and by mx := m|4, : Ax — [0,00] the
restriction of the Lebesgue measure to Ax.

Theorem 2.17 (Transformation Formula).

Suppose ¢ : U — V is a Ot diffeomorphism between open subsets of R™.

(1) If f : V — [0,00] is Lebesque measurable then fo ¢ : U — [0,00] is
Lebesgue measurable and

/(fo¢)|det(dgb)|dm:/fdm. (2.14)
U 1%

(ii) If E € Ay and f € LY(my) then ¢(E) € Ay, (foo)|det(do)| € L (my),

and

/E(fogb)|det(d¢)|dm: /¢(E)fdm. (2.15)

Proof. See page 72| ]

The proof of Theorem [2.17]relies on the next two lemmas. The first lemma
is the special case where ¢ is linear and f is the characteristic function of a
Lebesgue measurable set. The second lemma is a basic estimate that follows
from the linear case and implies the formula for the characteristic
functions of open sets.
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Lemma 2.18. Let & : R™ — R” be a linear transformation and let A C R"™
be a Lebesgue measurable set. Then ®(A) is a Lebesgue measurable set and

m(®(A)) = |det(®)|m(A). (2.16)

Proof. 1If det(®) = 0 then ®(A) is contained in a proper linear subspace of
R™ and hence is a Lebesgue null set for every A € A. In this case both
sides of equation ([2.16]) vanish. Hence it suffices to assume that ® is a vector
space isomorphism. For vector space isomorphisms we prove the assertion
in six steps. Denote by B C 28" the Borel o-algebra and by u := m|s
the restriction of the Lebesgue measure to the Borel o-algebra. Thus u
is the unique translation invariant Borel measure on R™ that satisfies the
normalization condition u([0,1]") = 1 (Theorem and (R™, A, m) is the
completion of (R", B, 1) (Theorem [2.14)).

Step 1. There exists a unique map p : GL(n,R) — (0,00) such that

1(®(B)) = p(P)u(B) (2.17)
for every ® € GL(n,R) and every Borel set B € B.

Fix a vector space isomorphism & : R” — R". Since ® is a homeomorphism
of R™ with its standard topology it follows that ®(B) € B for every B € B.
Define the number p(®) € [0, oo] by

p(®) = p(®([0,1)")). (2.18)

Since ®([0,1)™) has nonempty interior it follows that p(®) > 0 and since
®([0,1)™) is contained in the compact set ®([0, 1]") it follows that p(P) < oco.
Now define the map ue : B — [0, 00] by

_ 1(®(B))
po(B) == @) for B € B.

Then pe is a normalized translation invariant Borel measure. The o-addi-
tivity follows directly from the o-additivity of p, the formula ug () = 0 is
obvious from the definition, that compact sets have finite measure follows
from the fact that ®(K) is compact if and only if K C R" is compact, the
translation invariance follows immediately from the translation invariance
of 1 and the fact that ®(B+x) = ®(B) + ®(z) for all B € B and all z € R”,
and the normalization condition pe([0,1)") = 1 follows directly from the
definition of pe. Hence pe = p by Theorem 2.1} This proves Step 1.
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Step 2. Let p be as in Step 1 and let A € A and & € GL(n,R). Then
D(A) € A and m(P(A)) = p(P)m(A).

By Theorem there exist Borel sets By, By € B such that By C A C By
and (B \ By) = 0. Then ®(B,) C ®(A) C &(B;) and, by Step 1,

1(®(B1) \ ©(By)) = w(®(B1 \ By)) = p(®) (B \ By) = 0.

Hence ®(A) is a Lebesgue measurable set and

m(®(A)) = u(®(Bo)) = p(®)u(Bo) = p(®)m(A)
by Theorem and Step 1. This proves Step 2.
Step 3. Let p be as in Step 1 and let & = diag(Ay,...,\,) be a diagonal
matriz with nonzero diagonal entries \; € R\ {0}. Then p(®) = [\ -+ |A\nl.
Define I := [—1,1] and [; := [—|\],|Ni]] for ¢ = 1,...,n. Then Q :=I"
has Lebesgue measure m(Q) = 2" and the cuboid ®(Q) = I[; X - -+ x I,, has

Lebesgue measure m(®(Q)) = 2"|A\|---|A,| by part (iv) of Corollary
Hence Step 3 follows from Step 2.

Step 4. The map p : GL(n,R) — (0,00) in Step 1 is a group homomorphism
from the general linear group of automorphisms of R™ to the multiplicative
group of positive real numbers.

Let ®, ¥ € GL(n,R). Then it follows from (2.17) with B := ¥([0,1)") and
from the definition of p(¥) in (2.18) that

p(PW) = p(@VU([0,1)")) = p(2)u(¥([0,1)")) = p(®)p(¥).
Thus p is a group homomorphism as claimed and this proves Step 4.

Step 5. The map p : GL(n,R) — (0,00) in Step 1 is continuous with respect
to the standard topologies on GL(n,R) and (0, 00).

It suffices to prove continuity at the identity. Define the norms

| 2]
el = max [n, B, = sup Al

(2.19)
=1,..., n 0F#xcR" ||$||m

for z € R™ and a linear map ® : R® — R". Denote the closed unit ball in

R by Q :={zx € R"|||z||oc <1} =[-1,1]". Fix a constant 0 < J < 1 and a

linear map ® : R™ — R" such that ||® — 1||c < 0. Then ® € GL(n,R) and
- 1

Pl = Z(n — D)k, 1070 < 5
k=0
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Thus ®(Q) C (1+6)Q and (1 —§)d~(Q) C Q. Hence
(1-6)Q CP(Q)C (1+9)Q.

Since p(®) = m(P(Q))/m(Q) by Step 2 and m(rQ) = r"m(Q) for r > 0 by
Steps 2 and 3, this shows that (1 — )" < p(®) < (1 +§)". Given ¢ > 0
choose a constant 0 < § < 1suchthat 1 —e < (1 —-0)"< (14+9)" <1+e.
Then

[e-1,<é = (@) = 1] <e
for all ® € GL(n,R). This proves Step 5.
Step 6. p(®) = |det(®)| for all ® € GL(n,R).

If & € GL(n,R) is diagonalizable with real eigenvalues then p(®) = |det(®)|
by Step 3 and Step 4. If & € GL(n,R) has only real eigenvalues then it
can be approximated by a sequence of diagonalizable automorphisms with
real eigenvalues and hence it follows from Step 5 that p(®) = |det(P)|. Since
every automorphism of R” is a finite composition of automorphisms with real
eigenvalues (elementary matrices) this proves Step 6. Lemma follows
immediately from Step 2 and Step 6. n

Define the metric de : R” X R" — [0,00) by dw(z,y) = ||z —y||, for
z,y € R", where ||| is as in (2.19)). The open ball of radius r > 0 about a
point a = (aq,...,a,) € R" with respect to this metric is the open cube

B.(a):= (a1 —rya1 +7r) X -+ X (@, — 7,0, +7)
and its closure is B,(a) = [a1 —r,a1 + 7] X -+ X [a, — 7, a, + 7).

Lemma 2.19. Let U C R" be an open set and let K C U be a compact
subset. Let ¢ : U — R™ be a continuously differentiable map such that
det(do(x)) # 0 for all x € K. For every € > 0 there exists a constant § > 0
such that the following holds. If 0 < r < 6§, a € R", and R C R" satisfy
B.(a) C R C B,(a) C K then

‘m(eﬁ(R)) — |det(dg(a))| m(R)| < em(R). (2.20)

Proof. The maps K — R:z — ||d¢(x) | and K — R : z — |det(dp(z))]
are continuous by assumption. Since K is compact these maps are bounded.
Hence there is a constant ¢ > 0 such that

Hd¢($)’1HOO <eg, |det(do(x))| <c¢  forallxz € K. (2.21)
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Let € > 0 and choose a constant 0 < a < 1 so small that

1—E<(1—a)"<(1+a)"<1+§. (2.22)
Choose § > 0 so small that, for all x,y € R",
o)
zy e K, [lo—yll, <o — ldg(z) — dé(y)ll.. < - (223)

Such a constant exists because the map d¢ : U — R™ " is uniformly contin-
uous on the compact set K C U. We prove that the assertion of Lemma[2.19
holds with this constant 0. B

Choose a € R” and 0 < r < ¢ such that B,(a) C K. Then |ja —z|| < ¢
for all « € B,(a). By (2.23) with ® := d¢(a) this implies
ldo(z) — || < = < ﬁ for all z € B,(a).
¢ - oo
Here the first step follows from ([2.23]) and the second step follows from ([2.21]).
Define the map YU — R" by ¢(z) = <I>*1 (¢(z) — ¢(a)). Then ¥(a) =
and dip(z) = ®~'d¢(z) and hence, by (2.23),

ldyp () = 1|, = ||~ (de(x) - ‘I))H < [[e7Y|, ldé(z) — [l < a
for all z € B,(a). By Theorem this implies
Bu-wp(0) € 0(B,(a) € 0(Bo(@) € Braasl0) (224

Now fix a subset R C R"™ such that B,(a) C R C B,(a). Then by
(1= a)®(B,(0)) € ¢(R) — é(a) C (1+ a)®(B,(0)).
Since m(R) = m(B,(0)) = m(B,(0)) by part (iv) of Corollary m, it follows
from Lemma E and the inequalities (2.21]) and - that
|det(®)| m(R) — em(R) < (1 - E> |det(®)| m(R)
(1 —a)"|det(®)| m(R)
m((1 — a)®(B,(0)))
m(¢(R))
m((1+ a)®(B,(0)))
(14 )" |det(P)| m(R)
(1+2) det(@)|m(R)
|det(®)| m(R) + em(R).
This proves and Lemma O

A

VARVAN

IN A
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Proof of Theorem |2.17. The proof has seven steps. The first four steps es-
tablish equation ([2.14]) for the characteristic functions of open sets, compact
sets, Borel sets, and Lebesgue measurable sets with compact closure in U.

Step 1. If W C R™ is an open set with compact closure W C U then
m(@(W) = | |det(ds)] am.
1%

Fix a constant € > 0. Then there exists a constant 0 > 0 that satisfies the
following two conditions.

(a) Ifa € R", 0 < r <6, R C R” satisfy B.(a) C R C B,.(a) C W then
(o) ~ den(d(a)) m(R)| < S0
(b) For all z,y € W
o=yl <3 = Idet(dp(a)) — det(db(u))] < 5o

That 6 > 0 can be chosen so small that (a) holds follows from Lemma
and that it can be chosen so small that (b) holds follows from the fact
that the function det(d¢) : U — R is uniformly continuous on the com-
pact set W. Now write W as a countable union of pairwise disjoint half-open
cubes R; C R™ centered at a; € R™ with side lengths 2r; such that 0 < r; < §.
(See page ) Then B,,(a;) C R; C B,.(a;) C W for all i and

m(W) =3 m(R),  m(e(W) =3 m(e(R)).  (225)

It follows from ([2.25)) and (a) that

mo()) 3 e ()] < 5 (2.26)

It follows from (b) that ||det(d¢)| — >, |det(dp(a;))| xr,| < Fmary on W
Integrate this inequality over W to obtain

/W | det(d)| dm — Z det(do(a;))| m(R;)| < g (2.27)

)

By (2.20) and (2.27) we have [m(¢(W)) — [i,/|det(d¢)|dm| < . Since this
holds for all € > 0, Step 1 follows.
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Step 2. If K C U is compact then

m(o (k) = [ |det(ds)] dm.

Choose an open set W O K with compact closure W C U. Then
m(¢(K)) = m(¢(W)) —m(e(W \ K))
= / |det(do)| dm — |det(do)|dm = / |det(do)| dm.
w K

WA\K
Here the second equation follows from Step 1. This proves Step 2.

Step 3. If B € B has compact closure B C U then ¢(B) € B and
m(@(B)) = [ [det(ds)] dm.
B

That ¢(B) is a Borel set follows from the fact that it is the pre-image of
the Borel set B under the continuous map ¢! : V' — U (Theorem .
Abbreviate b := m(¢(B)). Assume first that b < oo and fix a constant € > 0.
Then it follows from Theorem that there exists an open set W/ C R"™
with compact closure W/ C V such that ¢(B) C W’ and m(W') < b+ ¢ and
a compact set K’ C B such that u(K’) > b —e. Define K := ¢~!(K’) and
W := ¢~'(W'). Then K is compact, W is open, W C U is compact, and

KcBcCW, b—e<m(o(K)) <m(p(W)) <b+e.

Hence it follows from Step 1 and Step 2 that
b—e< / (det(de)| dm < / det(do)| dm < / det(de)| dm < b+ <.
K B w

Thus b — e < [,|det(dp)| dm < b+ ¢ for every € > 0 and so

/B|det(dgb)| dm =b=m(¢(B)).

If b = oo then, by Theorem [2.13] there exists a sequence of compact sets
K! C ¢(B) such that u(K!) > i. Hence K; := ¢~'(K!) is compact and
Ji,|det(dg)|dm = u(¢(K;)) > i by Step 2. Since K; C B this implies
[ldet(dp)| dm > i for all i € N and hence [,|det(d¢)|dm = oo = m(4(B)).
This proves Step 3.
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Step 4. If A € A has compact closure A C U then ¢(A) € A and
m(o(4)) = [ |det(ao)]dm.

Let A € A. By Theorem[2.14] there exist Borel sets By, By € B, with compact
closure contained in U, such that By C A C By and m(B; \ By) = 0. Then
®(By) C ¢p(A) C ¢(By) and it follows from Step 3 that ¢(By) and ¢(B;) are
Borel sets and m(¢(By) \ ¢(By)) = m(¢(By \ By)) = fBl\BO|det(d¢)| dm = 0.
Hence it follows from Theorem that ¢(A) is a Lebesgue measurable set
and m(¢(A)) = m(¢(By)) = [, |det(dg)| dm = [,|det(dp)|dm. Here the last
equation follows from the fact that the set A\ By is Lebesgue measurable
and has Lebesgue measure zero. This proves Step 4.

Step 5. Assertion (i) of Theorem holds for every Lebesque measurable
step function f =s:V — R whose support is a compact subset of V.

Write s = Zle a;x4, with a; € R and A; € A such that A; is a compact
subset of V for all <. Then ¢'(A;) is a Lebesgue measurable set with com-
pact closure in U by Step 4. Hence so ¢ = Zle Q;iX¢-1(4,) 1s a Lebesgue
measurable step function and

/U(soq§)|det(dqb)|dm _ Zai/ det(de)| dm

i=1 d~1(As)
= Zaim(Ai):/sdm.
: 1%

Here the second equation follows from Step 4. This proves Step 5.

Step 6. We prove (i).

By Theorem there is a sequence of Lebesgue measurable step functions
s; V. — [0,00) such that 0 < s1 < s9 < -+ and f(z) = lim;_, s;(z) for
every x € V. Choose an exhausing sequence of compact sets K; C V such
that K; C K, for alli and | J, K; = V and replace s; by s;xx,. Then part (i)
follows from Step 5 and the Lebesgue Monotone Convergence Theorem [1.37]
Step 7. We prove (ii).

For E = U part (ii) follows from part (i) and the fact that (f o ¢)* = f£ o ¢.
If F'€ Ay then f := xp|v is Lebesgue measurable, hence f o ¢ = x4-1m)|v
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is Lebesgue measurable by part (i), and so ¢! (F) € Ay. Replace ¢ by ¢!
to deduce that if £ € Ay then ¢(E) € Ay. Then (ii) follows for all E € Ay
by replacing f with fxgz). This proves Step 7 and Theorem [2.17] ]

2.4 Lebesgue Equals Riemann

The main theorem of this section asserts that the Lebesgue integral of a func-
tion on R™ agrees with the Riemann integral whenever the latter is defined
and the function in question has compact support. The section begins with
a recollection of the definition of the Riemann integral. (For more details
see [0, 19} 21].)

The Riemann Integral

Recall the notation R(x, k) := x+[0,27%)" for x € R™ and k € N, which was
used in the proof of Theorem on page [64] The closure of R(z, k) is the

closed cube R(z,k) =z +[0,27%]". The sets R(¢, k), with ¢ ranging over the
countable set 27%Z", form a partition of the Euclidean space R".

Definition 2.20. Let f : R™ — R be a bounded function whose support

supp(f) := {z € R"| f(x) # 0}

is a bounded subset of R". For k € N define the lower sum S(f, k) € R and
the upper sum S(f, k) € R by

S(f k)= ) (inf f) 97k

“am \ (0K
Le2=k7, (2.28)
S(f, k) = Z (Sup f) 2k,
tea—k7n R(¢,k)

These are finite sums and satisfy supy, S(f, k) < infy S(f, k). The function
f : R" — R is called Riemann integrable if sup, S(f, k) = inf, S(f, k).
The Riemann integral of a Riemann integrable function f : R™ — R is the
real number

R(f) := f(z)dz :=sup S(f, k) = inf S(f, k) = lim S(f, k). (2.29)
Rr keN keN k=00
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Remark 2.21. The Riemann integral can also be defined by allowing for
arbitrary partitions of R™ into cuboids (see [19, Definition 2.3]) or in terms of
convergence of the so-called Riemann sums (see [2I), Definition 7.1.2]). That
all three definitions agree is proved in [19, Satz 2.8] and [21, Theorem 7.1.8]).

Definition 2.22. A bounded set A C R" us called Jordan measurable if
its characteristic function x4 : R™ — R is Riemann integrable. The Jordan
measure of a Jordan measurable set A C R" is the real number

' (A) == R(xa)
= / _xalw)dz (2.30)
= lim 2 g fre 2z |RER N A4 0}

k—o00

Exercise 2.23. (i) Prove the last equation in ([2.30)).

(ii) Prove that a bounded set A C R™ is Jordan measurable if and only if its
boundary dA = A\ int(A) is a Jordan null set. (See Definition )

(iii) Prove that the closure of a Jordan null set is a Jordan null set.

The Lebesgue and Riemann Integrals Agree

Theorem 2.24. (i) If f : R™ — R is Riemann integrable then f € L'(m)
and its Lebesgue integral agrees with the Riemann integral, i.e.

fdm =TR(f).
R
(ii) If A C R™ is Jordan measurable then A is Lebesgue measurable and

m(A) = 1’ (A4).

Proof. Assertion (ii) follows from (i) by taking f = xa. Thus it remains to
prove (i). Let f : R" — R be a Riemann integrable function. Then f is
bounded and has bounded support. Define the functions f . fr : R" =R by

f,(z) == _inf f, fr(x):=sup f for x € R((, k), £ €27FZ". (2.31)
o R(¢,k) R(4,k)

These are Lebesgue measurable step functions and

[ gam=stn. [ Fom=300,

R
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They also satisfy B B
Ik Sik.;,_l ngfk—&-l ka

for all £ € N. Define the functions i,? :R™ - R by

f(x) = hmf() f(2) = lim f,(2) for = € R".

- k—o00 — k—00

Then B
f(x) < f(z) < f(2)

for every z € R". Moreover, |f| and | f .| are bounded above by the Lebesgue
integrable function cx 4, where ¢ := sup,cgn|f(z)| and A := [-N, N]" with
N € N chosen such that supp(f) C [-N, N]*. Hence it follows from the
Lebesgue Dominated Convergence Theorem that f and f are Lebesgue
integrable and B

fdm = lim fkdm:I}Lmﬁ(f,k):R(f)

= lim S(f, k) = hm fkdm fdm.

k—o0 Rn

By Lemma with f replaced by f — S, this implies that f = f = f
Lebesgue almost everywhere. Hence f € £!(m) and

/nfdm fdm=R(f)

This proves Theorem [2.24] O

The discussion in this section is restricted to Riemann integrable functions
f R = R with compact support and Theorem [2.24] asserts that for such
functions the Riemann integral agrees with the Lebesgue integral. When f
does not have compact support and is locally Riemann integrable, the im-
proper Riemann integral is defined by

f(z)dz := lim f(z)dx, (2.32)
R r—00 B,

provided that the limit exists. Here B, C R" denotes the ball of radius r

centered at the origin. There are many examples where the limit (2.32)) exists

even though the Lebesgue integral fRn | f| dm is infinite and so the Lebesgue
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integral of f does not exist. An example is the function f : R — R given by
f(z) :=z tsin(z) for z € R\ {0} and f(0) := 1. This function is continuous
and is not Lebesgue integrable, but the improper Riemann integral exists
and is equal to 7 (see Example [7.49). Improper integrals play a central
role in Fourier analysis, probability theory, and partial differential equations.
However, this topic will not be pursued any further in this book

2.5 Exercises

Exercise 2.25. Show that the Cantor set in R is a Jordan null set. Show
that Q N [0,1] is a Lebesgue null set but not a Jordan null set. Show that
A C R" is a Lebesgue null set if and only if #(A) = 0. Find an open set
U C R whose boundary has positive Lebesgue measure.

Exercise 2.26. Prove that every subset of a proper linear subspace of R"
is Lebesgue measurable and has Lebesgue measure zero. Find a Jordan
measurable subset of R™ that is not a Borel set. Find a bounded Lebesgue
measurable subset of R™ with positive Lebesgue measure that is neither a
Borel set nor Jordan measurable.

Exercise 2.27. Find examples of Lebesgue null sets A, B C R™ whose sum
A+ B :={z+y|xz €A, y€ B} is not a Lebesgue null set.

Exercise 2.28. Let (X, .4, ) be a measure space and define the function
v: 2% — [0, 00] by

v(B) :=inf {u(A)| A€ A, BC A}. (2.33)

(i) Prove that v is an outer measure and that A C A(v).

(ii) Assume p(X) < oo. Prove that the measure space (X, A(v),v|an)) is
the completion of (X, A, 1). Hint: Show that for every subset B C X there
exists a set A € A such that B C A and v(B) = u(A).

(iii) Let X be a set and A C X be a nonempty subset. Define
A:={0,A A° X}, w(0) := p(A) =0, p(A°) == p(X) == oo.

Prove that (X, A, 1) is a measure space. Given B C X, prove that v(B) =0
whenever B C A and v(B) = oo whenever B ¢ A. Prove that A(v) = 2%
and that the completion of (X, .A, u) is the measure space (X, A", u*) with
A*={BC X|BCAor A°C B} and u* = v|g+. (Thus the hypothesis
p(X) < oo cannot be removed in part (ii).)
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Exercise 2.29. Let f : R — R be continuously differentiable and define
A:={xeR|f'(x)=0}.
Prove that f(A) is a Lebesgue null set. Hint: Consider the sets
Ape i ={z eR||z| <n, |f(z) <27"}.

Exercise 2.30. Find a continuous function f : [0,00) — R such that f is
not Lebesgue integrable but the limit lim7_, . fOT f(t) dt exists.

Exercise 2.31. Determine the limits of the sequences

a ::/ (1-5)" e, o, :=/ (1+5) e, nen.
0 n 0 n

Hint: Use the Lebesgue Dominated Convergence Theorem [1.45]

Exercise 2.32. Let (R, .4, m) be the Lebesgue measure space. Construct a
Borel set £ C R such that

m(ENI)

0< m(D)

<1

for every nonempty bounded open interval I C R. (See also Exercise [6.21])

Exercise 2.33. Find the smallest constant ¢ such that
log(1+e€) <c+t for all t > 0.

Does the limit .
1
lim —/ log (1 —l—e”f(”)) dx
0

n—oo N,

exist for every Lebesgue integrable function f : [0,1] — R? Determine the
limit when it does exist.

Exercise 2.34. Let (R", A, m) be the Lebesgue measure space and let

6:R" - R"
be a C!-diffeomorphism. Prove that ¢, A = A and that
1
o.m)(A) = / dm for all A € A.
I = [, faet(dyo 61

Hint: See Exercise [1.69 and Theorems [I.40 and .17
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Exercise 2.35 (Hausdorff Measure). Let (X, p) be a metric space and
fix a real number d > 0. The diameter of a subset A C X is defined by

diam(A) := sup p(z,y). (2.34)

T, yeA
For € > 0 define the function v4. : 2% — [0, 00] by

I is finite or countably infinite,
vae(A) :=inf Y " diam(D;)* | D; € X, diam(D;) < e fori el ». (2.35)
iel and A C {J,; Ds
for A C X. Thus v4.(0) = 0 and vg.(A) = oo whenever A does not admit a
countable cover by subsets of diameter less than €. Moreover, the function
e — v4.(A) is nonincreasing for every subset A C X. The d-dimensional
Hausdorff outer measure is the function v : 2% — [0, co] defined by

va(A) == supry(A) = limvg(A) for A C X. (2.36)
>0 e—0
Prove the following.
(i) v4 is an outer measure.
(ii) If A,B C X satisfy p(A,B) := inf{p(x,y) |z € A, y € B} > 0 then
vi(AU B) = v4(A) + v4(B). Hence, by Theorems and [2.5] the set
Ag = {A cX | Als Vd—measurable}
is a o-algebra containing the Borel sets and
fa = Va|a, : Aq — [0, 0]

is a measure. It is called the d-dimensional Hausdorff measure on X.
Hausdorff measures play a central role in geometric measure theory.
(iii) If d = 0 then Ay = 2% and vy = pp is the counting measure.
(iv) The n-dimensional Hausdorff measure on R" agrees with the Lebesgue
measure up to a factor (the Lebesgue measure of the ball of radius 1/2).
(v) Let A C X be nonempty. The Hausdorff dimension of A is the number

dim(A) :=sup{r > 0|v.(A) = o} =inf{s > 0| vs(A) = 0} . (2.37)
The second equality follows from the fact that v4(A) > 0 implies v,.(A) = oo
for 0 <r < d, and v4(A) < oo implies v5(A) =0 for s > d.
(vi) The Hausdorff dimension of a smooth embedded curve I' C R™ is d = 1
and its 1-dimensional Hausdorff measure p;(I") is the length of the curve.
(vii) The Hausdorff dimension of the Cantor set is d = log(2)/log(3).



Chapter 3

Borel Measures

The regularity properties established for the Lebesgue (outer) measure in
Theorem play an important role in much greater generality. The present
chapter is devoted to the study of Borel measures on locally compact Haus-
dorff spaces that satisfy similar regularity properties. The main result is the
Riesz Representation Theorem [3.15] We begin with some further recollec-
tions about topological spaces.

Let (X,U) be a topological space (see Definition [1.9). A neighborhood
of a point x € X is a subset A C X that contains z in its interior, i.e.
x € U C A for some open set U. X is called a Hausdorff space if any
two distinct points in X have disjoint neighborhoods, i.e. for all z,y € X
with x # y there exist open sets U,V C X such that x € U, y € V, and
UNV ={. X is called locally compact if every point in X has a compact
neighborhood. It is called o-compact if there exists a sequence of compact
sets K; C X, ¢ € N, such that K; C K;4; for all i and X = [J;°, K;.

3.1 Regular Borel Measures

Assume throughout that (X,U) is a locally compact Hausdorff space and
denote by B C 2% the Borel o-algebra. Thus B is the smallest o-algebra on X
that contains all open sets. In the context of this chapter it is convenient to
include local finiteness (compact sets have finite measure) in the definition
of a Borel measure. There are other geometric settings, such as the study
of Hausdorff measures (Exercise , where one allows for compact sets to
have infinite measure, but these are not discussed here.

81
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Definition 3.1. A measure p : B — [0,00] is called a Borel measure if
pu(K) < oo for every compact set K C X. A measure i : B — [0,00] is called
outer regular if

u(B) =inf {u(U)|BC U C X and U is open} (3.1)
for every Borel set B € B, is called inner regular if
n(B) =sup {u(K) | K C B and K is compact} (3.2)

for every Borel set B € B, and is called regular if it is both outer and inner
reqgular. A Radon measure is an inner reqular Borel measure.

Example 3.2. The restriction of the Lebesgue measure on X = R” to the
Borel o-algebra is a regular Borel measure by Theorem [2.13

Example 3.3. The counting measure on X = N with the discrete topology
U = B =2V is a regular Borel measure.

Example 3.4. Let (X,U) be any locally compact Hausdorff space and fix
a point g € X. Then the Dirac measure p = 9., at o is a regular Borel
measure (Example [1.31)).

Example 3.5. Let X be an uncountable set equipped with the discrete
topology U = B = 2%. Define i : B — [0, 00] by

(B) = 0, if B is countable,

H " | oo, if B is uncountable.

This is a Borel measure. Moreover, a subset K C X is compact if and only
if it is finite. Hence p(X) = oo and p(K) = 0 for every compact set K C X.
Thus p is not a Radon measure.

The next example occupies three pages and illustrates the subtlety of
the subject (see also Exercise 18 in Rudin [I7, page 59]). It constructs a
compact Hausdorff space (X,U) and a Borel measure p on X that is not a
Radon measure. More precisely, there is a point x € X such that the open
set U := X \ {k} is not o-compact and satisfies u(U) = 1 and u(K) = 0
for every compact subset K C U. This example is a kind of refinement of
Example 3.5] It is due to Dieudonné.
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Example 3.6 (Dieudonné’s measure). (i) Let (X, <) be an uncountable
well ordered set with a maximal element x € X such that every element
z € X \ {k} has only countably many predecessors. Here a set is called
countable iff it is finite or countably infinite. (Think of this as the uncountable
Mount Everest; no sequence reaches the mountain peak x.) Thus the relation
< on X satisfies the following axioms.

(a) If z,y,z € X satisfy x < y and y < 2z then z < 2.

(b) If x,y € X satisfy x < y and y < x then x = y.

(c)lfz,ye X thenz g yory=x.

(d) If ) # A C X then there is an a € A such that a < z for all x € A.

(e) If z € X \ {k} then z < k and the set {y € X |y < 2} is countable.
Define the relation < on X by z <y if z x yand x #y. For ) # A C X
denote by min(A) € A the unique element of A that satisfies min(A) < « for
all z € A. (See conditions (b) and (d).) For z € X define

Sy ={ye X|z <y}, P,={ye X|y<z}.
Thus P, is the set of predecessors of z and S, is the set of successors of x.
If z € X\ {k} then P, is countable and S, is uncountable. Define the map
s: X\ {x} = X\ {k}, s(x) := min(S,).

Then X \ S, = Pyyy = P, U{z} for all z € X. Let Y C 2% be the smallest
topology that contains the sets P, and S, for all x € X. A set U C X is
open in this topology if it is a union of sets of the form Py, S, and S, N B,.
(ii) We prove that (X,U) is a Hausdorff space. Let z,y € X such that x # y
and suppose without loss of generality that x < y. Then Py and S, are
disjoint open sets such that x € Py,) and y € S,.

(iii) We prove that every nonempty compact set K C X contains a largest
element max(K) € K such that K N Syaxx) = 0. This is obvious when
k € K because S, = ). Thus assume k ¢ K and define

Vi={reX|KCP,}.
Since x € V this set is nonempty and min(X) < min(V') =: v because K # ).
Since X \ K is open and v € X \ K there exist elements a,b € X such that
a<v=<band S,NP,NK = . This implies
KCPU\(SaﬂPb) CPb\(SaﬂPb) CX\Sa:PS(a).

Hence K\ {a} C Pyq \ {a} = P, and K ¢ P, because a < v and so a ¢ V.
This implies a € K C Py and hence KNS, = K \ Py, = 0.



84 CHAPTER 3. BOREL MEASURES

(iv) We prove that (X,U) is compact. Let {U,}icr be an open cover of X.
We prove by induction that there exist finite sequences x1,...,z, € X and
1,...,1 € I such that z;, € Uzk \ Uik71 and Sgck C Uil U---u Uik71 for k > 27
and X = U§:1 U;;. Define z; := x and choose i; € I such that x € Uj,.
If U;, = X the assertion holds with ¢ = 1. Now suppose, by induction,
that x1,..., 2, and iy, ..., 4 have been constructed such that z; € U, for
j=1,...,kand S, C U;,U---0UU,,_,. It U;,U---UU;, = X we are done with
¢ = k. Otherwise Cy := X\ U;; U---UU,, is a nonempty compact set and we
define x4y := max(C}) by part (iii). Then x4y € Cy and Cy N S,,,, = 0.
Hence S;,,, C U;; U---UU;,. Choose ixy1 € I such that zp1 € U, .
This completes the induction argument. The induction must stop because
Tre1 < xp for all k and every strictly decreasing sequence in X is finite by
the well ordering axiom (d). This shows that (X,U) is compact.

(v) Let K; C X, i € N, be a sequence of uncountable compact sets. We
prove that the compact set
K=K

ieN
is uncountable. To see this, we first prove that

K\ {x} #£0. (3.3)

Choose a sequence z,, € X \ {x} such that x, < x,.; for all n € N and
Tor; € K for 1 <4 <2F—1and k € N. That such a sequence exists follows
by induction from the fact that the set X \ S, = Py(,) is countable for each
n while the sets K; are uncountable for all i. Now the set P =, P, is
countable and hence the set

S=x\P=X\{JP =X\ {JPpu,)= )X\ Ppn) =[5

neN neN neN neN

neN

is uncountable. Hence = := min(S) < k. We prove that z € K; for all ¢ € N.
Assume by contradiction that x ¢ K; for some i. Then there are elements
a,b € X such that a < ¢ <band U := P,NS, C X\ K;. If z, < a for
all n € N then P C P, and so a € X \ P = S, which is impossible because
a < x = min(S). Thus there must be an integer ng € N such that a < z,,.
This implies a < =, < * < b and hence x, € U C X \ K; for all n > ny,
contradicting the fact that zqx,; € K; for all £ € N. This contradiction
shows that our assumption that = ¢ K; for some i € N must have been
wrong. Thus z € K and this proves .
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We prove that K is uncountable. Assume by contradiction that K is
countable and choose a sequence x; € K such that K \ {x} = {x;|i € N}.
Then s(x;) < k and K := K; NS, = K; \ Py, is an uncountable compact
set for every i € N. Moreover, K’ := (,.y K/ C K\ {z;|i € N} = {x},
contradicting the fact that K"\ {x} # 0 by (3.3). This contradiction shows
that K is uncountable as claimed.

(vi) Define A C 2% by

A={acx|

AU {k} contains an uncountable compact set,
or A°U {k} contains an uncountable compact set.

We prove that this is a o-algebra. To see this note first that X € A and that
A € A implies A¢ € A by definition. Now choose a sequence A; € A and
denote A := J;oy Ai- If one of the sets A; U {x} contains an uncountable
compact set then so does the set AU{x}. If none of the sets A;U{x} contains
an uncountable compact set then the set A U {x} contains an uncountable
compact set for all 2 € N and hence so does the set (),.y(AfU{x}) = A°U{x}
by part (v). In both cases it follows that A € A.

(vii) Define the map p: A — [0, 0] by

(A) = 1, if AU{k} contains an uncountable compact set,
=0, if Acu {k} contains an uncountable compact set.

This map is well defined because the sets A U {xk} and A° U {xk} cannot
both contain uncountable compact sets by part (v). It satisfies (@) = 0.
Moreover, if A; € A is a sequence of pairwise disjoint measurable sets then
at most one of the sets A; U{x} can contain an uncountable compact set and
hence p(U;ey Ai) = Djen #(A;). Hence 1 is a measure.

(viii) The o-algebra B C 2% of all Borel sets in X is contained in A. To
see this, let U C X be open. If U¢ is uncountable then U U {xk} is an
uncountable compact set and hence U € A. If U° is countable choose a
sequence z; € U¢ such that U°\ {x} = {z; |7 € N} and define S := ("), S,
Then X \ S = U;en(X \ S2,) = Usen Po(e) 1s a countable set and hence
s := min(S) < k. Since z; < s for all ¢ € N it follows that U\ {k} C P;.
Hence X \ P; is an uncountable compact subset of U U {x} and so U € A.

(ix) The set U := X \ {x} is uncountable and every compact subset of U
is countable by part (v). Hence p(K) = 0 for every compact subset K C U
and p(U) = 1 because U U {k} = X is an uncountable compact set. Thus
pls : B — [0,00] is a Borel measure but not a Radon measure.
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The next lemma and theorem are included here in preparation for the
Riesz Representation Theorem [3.15, They explain the relation between the
various regularity properties of Borel measures.

Lemma 3.7. Let n : B — [0,00] be an outer reqular Borel measure that is
inner regular on open sets, i.e.

u(U) =sup {u(K)| K C U and K is compact} (3.4)

for every open set U C X. Then the following holds.

(i) Every Borel set B C X with p(B) < oo satisfies (3.2)).

(ii) If X is o-compact then p is regqular.

Proof. We prove (i). Fix a Borel set B C X with u(B) < 0o and a constant
e > 0. Since p is outer regular, there exists an open set U C X such that

BcU  wU)<ubB)+ g

Thus U \ B is a Borel set and p(U \ B) = pu(U) — u(B) < €/2. Use the outer
regularity of p again to obtain an open set V' C X such that
£

Now it follows from (3.4]) that there exists a compact set K C X such that
KU, p(K)>pU) - 5.

Define C':= K \ V. Since X is a Hausdorff space, K is closed, hence C is a
closed subset of K, and hence C' is compact (see Lemma [A.2)). Moreover,

CcU\VcCB, B\CC(B\K)uV c(U\K)uUV,

and hence (B \ C) < u(U \ K) + u(V) < e. This proves (i).

We prove (ii). Choose a sequence of compact sets K; C X such that
K; C Ky for all i € N and X = J;2, K;. Fix a Borel set Be B. 1If
pu(B) < oo then B satisfies by (i). Hence assume p(B) = oo. Then
it follows from part (iv) of Theorem that lim; . p(B N K;) = oo. For
each integer n € N choose 7,, € N such that

Since u(BN K;,) < p(K;,) < oo it follows from (i) that (3.2) holds with B
replaced by BN K; . Hence there exists a compact set C;, C B N K, such
that (C,,) > n. This proves (ii) and Lemma [3.7] O
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Theorem 3.8. Let iy : B — [0,00] be an outer reqular Borel measure that
is inner reqular on open sets. Define pg : B — [0, 00] by

pio(B) :=sup {11 (K) | K C B and K is compact} for BeB. (3.5)

Then the following holds

(1) o is a Radon measure, it agrees with py on all compact sets and all open
sets, and po(B) < pui(B) for all B € B.

ii) If X s o-compact then py = jiy.
1
(iii) If f : X — R is a compactly supported continuous function then

/X Fdo = /X fdp. (3.6)

(iv) Let pu: B — [0, 00] be a Borel measure that is inner reqular on open sets.
Then fX fdu= fX fduy for every compactly supported continuous function
f: X = R if and only if po(B) < pu(B) < py(B) for all B € B.

Proof. We prove that pg is a measure. It follows directly from the definition
that po(0) = 0. Now assume that B; € B is a sequence of pairwise disjoint
Borel sets and define B := |J;2, B;. Choose any compact set X C B. Then
p1(B; N K) < oo and hence it follows from part (i) of Lemma [3.7] that

for all 7 € N. This implies

p(K) = ZMl(Bz‘ NK)=>Y pm(BiNK)< Zﬂo(Bz’)-

i=1

Take the supremum over all compact sets K C B to obtain
polB) < no(B). (3.7
i=1

To prove the converse inequality, it suffices to assume that pg(B) < oc.
Then po(B;) < po(B) < oo for all i € N. Fix a constant € > 0 and choose a
sequence of compact sets K; C B; such that py (K;) > po(B;) — 2 % for all 4.
Then, for every n € N, the set K; U---U K, is a compact subset of B and

po(B) = m(KiU---UK,) = ZMl(Ki) > ZMO(Bz’) —&
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Now take the limit n — oo to obtain
po(B) > Zﬂo(Bi) —€.
i=1

Since this holds for all € > 0 it follows that po(B) > > oo, p10(B;) and hence
po(B) = Y72, p1o(B;) by (3.7). This shows that g is a measure. Moreover
it follows directly from the definition of ug that ug(K) = pi(K) for every
compact set K C X. Since p; is inner regular on open sets it follows that
po(U) = p1(U) for every open set U C X. Since po(K) = p(K) for every
compact set K C X it follows from the definition of pg in that pg is
inner regular and hence is a Radon measure. The inequality po(B) < u1(B)
for B € B follows directly from the definition of . This proves part (i).
Part (ii) follows directly from the definition of yo and part (ii) of Lemma[3.7]

We prove part (iii). Assume first that s : X — R is a Borel measurable
step function with compact support. Then

)4
S = E ;X B;
i=1

where a; € R and B; € B with uy(B;) < oo. Hence po(B;) = pi(B;) by
part (i) of Lemma [3.7] and hence

¢
sduy = o o (B; :/ sdpy.
/X o= D aa(B) = [ sam

Now let f : X — [0,00] be a Borel measurable function with compact
support. By Theorem there exists a sequence of Borel measurable
step functions s, : X — [0,00) such that 0 < s1(z) < so(z) < -+ and
f(z) = lim,_, s, (z) for all z € X. Thus s, has compact support for each n.
By the Lebesgue Monotone Convergence Theorem this implies

/fd,uoz lim / Sp ditg = lim Sp ditq :/ fdu.

If f: X — Ris a pj-integrable function with compact support then, by what
we have just proved, [, fFdug = [, f=du < oo, so f is po-integrable and
satisfies (3.6). This proves part (iii).
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We prove part (iv) in four steps.

Step 1. Let pu: B — [0,00] be a Borel measure such that

/X fdu = /X fdm (3.8)

for every compactly supported continuous function f: X — R. Then

pE) < pu(K),  m(U) < p(U)

for every compact set K C X and every open set U C X.

Fix an open set U C X and a compact set K C U. Then Urysohn’s
Lemma asserts that there exists a compactly supported continuous func-
tion f: X — R such that

flk=1,  supp(f)cU,  0<f<L

Hence it follows from equation ({3.8]) that

M(K)S/deu=/xfdu1§u1(U)
and likewise
ul(K)S/dem:/deuﬁu(U)-

Since u(K) < p1(U) for every open set U C X containing K and p4 is outer
regular we obtain

w(K) <inf{u(U)| K CcU C X and U is open} = py (K).

Since 1 (K) < u(U) for every compact set K C U and p is inner regular on
open sets we obtain

p1(U) =sup{(K)| K C U and K is compact} < u(U).

This proves Step 1.

Step 2. Let p be as in Step 1 and assume in addition thal p is inner
reqular on open sets. Then u(K) = uy(K) for every compact set K C X and
w(U) = 1 (U) for every open set U C X.
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If U C X is an open set then
w(U) = sup{u(K)|K C U and K is compact}
< sup{m(K)|K C U and K is compact}

= m(U) < p(U).
Here the two inequalities follow from Step 1. It follows that u(U) = u1(U).
Now let K be a compact set. Then p(K) < oo. Since py is outer regular,
there exists an open set U C X such that K C U and uy(U) < co. Since u
and u, agree on open sets it follows that

p(K) = p(U) = pU\ K) = pu(U) = (U \ K) = pu (K).

This proves Step 2.
Step 3. Let p be as in Step 2. Then

po(B) < u(B) < ui(B) for all B € B. (3.9)

Fix a Borel set B € B. Then, by Step 2,

po(B) = sup{ui(K)|K C B and K is compact}
sup{p(K)| K C B and K is compact}

u(B)

inf {u(U)| B CU C X and U is open}

= inf{u(U)|B CU C X and U is open}

p1(B).

ININA

This proves Step 3.

Step 4. Let y : B — [0,00] be a Borel measure that satisfies (3.9). Then
fX fdu= fX fdug = fX fduy for every continuous function f : X — R with
compact support.

It follows from the definition of the integral and part (iii) that

/fduo /fdu</fdu1 /fduo

for every compactly supported continuous function f : X — [0,00). Hence
Jx fdp = [y fduo = [y fdu for every compactly supported continuous
function f : X — [0,00) and hence also for every compactly supported
continuous function f: X — R. This proves Step 4 and Theorem O
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Example 3.9. Let (X,U) be the compact Hausdorff space in Example
and let p : B — [0, 00| be Dieudonné’s measure.

(i) Take uy := p and define the function pg : B — [0, 00] by (3.5). Then
po(X) =1,  po({r}) =0, (X \{x})=0,

and so p is not a measure. Hence the assumptions on p; cannot be removed
in part (i) of Theorem [3.8|

(ii) Take py := 0, to be the Dirac measure at the point k € X. This is a
regular Borel measure and so the measure p in (3.5)) agrees with p;. It is an
easy exercise to show that the integral of a continuous function f : X — R
with respect to the Dieudonné measure p is given by

/deuzf(ff)z/xfduoz/xfdul-

Moreover, the compact set K = {k} satisfies u(K) =0 < 1 = u1(K) and
the open set U := X \ {k} satisfies u1(U) = 0 < 1 = p(U). This shows
that the inequalities in Step 1 in the proof of Theorem can be strict and
that the hypothesis that p is inner regular on open sets cannot be removed
in part (iv) of Theorem [3.8|

Remark 3.10. As Example [3.6] shows, it may sometimes be convenient to
define a Borel measure first on a o-algebra that contains the o-algebra of
all Borel measurable sets and then restrict it to B. Thus let A C 2% be
a o-algebra containing B and let u : A — [0,00] be a measure. Call p
outer regular if it satisfies for all B € A, call it inner regular if it
satisfies for all B € A, and call it regular if it is both outer and inner
regular. If p is regular and (X, B*, u*) denotes the completion of (X, B, |5),
it turns out that the completion is also regular (exercise). If in addition

(X, A, p) is o-finite (see Definition below) then
A C B, = p|a. (3.10)

To see this, let A € A such that p(A) < co. Choose a sequence of compact
sets K; C X and a sequence of open sets U; C X such that K; C A C U; and
w(A) =27 < u(K;) < pw(U;) < p(A) 427" for all ¢ € N. Then By := 2, K;
and By :=(;2, U; are Borel sets such that By C A C By and u(B; \ By) = 0.
Thus every set A € A with p(A) < oo belongs to B* and p*(A) = u(A).
This proves because every A-measurable set is a countable union of
A-measurable sets with finite measure. Note that if X is o-compact and
pu(K) < oo for every compact set K C X then (X, A, u) is o-finite.
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3.2 Borel Outer Measures

This section is of preparatory nature. It discusses outer measures on a locally
compact Hausdorff space that satisfy suitable regularity properties and shows
that the resulting measures on the Borel o-algebra are outer/inner regular.
The result will play a central role in the proof of the Riesz Representation
Theorem. As in Section we assume that (X,U) is a locally compact
Hausdorff space and denote by B the Borel o-algebra of (X,U).

Definition 3.11. A Borel outer measure on X is an outer measure
v 2% —[0,00] that satisfies the following azioms.

(a) If K C X is compact then v(K) < co.

(b) If Ky, Ky C X are disjoint compact sets then v(KoUK;) = v(Ko)+v(Ky).
(c) v(A) =inf{v(U)|ACU C X, U is open} for every subset A C X.

(d) v(U) =sup{v(K)|K C U, K is compact} for every open set U C X.

Theorem 3.12. Let v : 2% — [0,00] be a Borel outer measure. Then v|p is
an outer reqular Borel measure and is inner reqular on open sets.

One can deduce Theorem from Carathéodory’s Theorem 2.4 and use
axioms (a) and (b) (instead of the Carathéodory Criterion in Theorem 2.5) to
show that the o-algebra of v-measurable sets contains the Borel o-algebra.
That the resulting Borel measure has the required regularity properties is
then obvious from axioms (c) and (d). We choose a different route, following
Rudin [I7], and give a direct proof of Theorem which does not rely
on Theorem [2.4, The former approach is left to the reader as well as the
verification that both proofs give rise to the same o-algebra, i.e. the o-algebra
A in agrees with the o-algebra of r-measurable subsets of X.

Proof of Theorem[3.13, Define

A, = {E CcX ‘ v(E) =sup{v(K)|K C E, K is compact} < oo},
(3.11)
A= {ACX‘AHKGA6 for every compact setKCX}.

Here the subscript ”7e” stands for ”endlich” and indicates that the elements
of A, have finite measure. We prove in seven steps that A is a o-algebra
containing B, that = v|4: A — [0, 0] is a measure, and that (X, A, p) is
a complete measure space. That u is outer regular and is inner regular on
open sets follows immediately from conditions (c) and (d) in Definition [3.11]
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Step 1. Let E4, E», Es, ... be a sequence of pairwise disjoint sets in A, and
define E :=J;=, E;. Then the following holds.

(i) v(E) =32, v(E).
(ii) If v(F) < oo then E € A,.
The assertions are obvious when v(E) = oo because v(E) < > .2 v(E;).
Hence assume v(E) < co. We argue as in the proof of Theorem 3.8 Fix a
constant ¢ > 0. Since F; € A, for all i there is a sequence of compact sets
K; C E; such that v(K;) > v(E;) — 2" for all i. Then for all n € N
v(E)>v(KiU---UK,)
=v(Ky) + - Fr(KG) (3.12)
>v(E) 44+ v(E,) —¢
Here the equality follows from condition (b) in Definition [3.11] Take the
limit n — oo to obtain

e}

> U(E) <v(E)+e.

=1

Since this holds for all € > 0 it follows that

[e.e] o

> u(E) <v(E) <) v(E)

i=1 i=1

and hence

> u(E) =v(E). (3.13)
i=1
Now it follows from (3.12]) and (3.13)) that

V(E) > v(K U---UK,) Ziy(Ei)—ezu(E)— > w(E) -«

i=n-+1

for all n € N. By (3.13)) there exists an n. € N such that > °  v(FE;) <e.
Hence the compact set K, := Ky U---U K, C E satisfies

v(E) > v(K.) > v(E) — 2.
Since this holds for all € > 0 we obtain
v(E) =sup{v(K)|K C E, K is compact}
and hence E € A.. This proves Step 1.
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Step 2. ]on,El € Ae then EOUEl € Ae, EoﬂEl € Ae, and Eo\El € Ae.

We first prove that Ey \ E; € A.. Fix a constant € > 0. Since Ey, F; € A,
and by condition (c¢) in Definition [3.11], there exist compact sets Ky, K1 C X
and open sets Uy, U; C X such that

Ki C EZ C Ui7 I/(EZ) —e < I/(Kl) < I/(U7,> < I/(EZ> + g, 1= O, 1.

Moreover, every compact set with finite outer measure is an element of A, by
definition and every open set with finite outer measure is an element of A,
by condition (d) in Definition [3.11] Hence

K, U, Ui\ K; € A,
for i = 0,1 and it follows from Step 1 that

v(E; \ K;)
v(Ui \ Ei)

< v(U:\ KG) = (U) = v(KG) < 22,
< WU\ Ki) = o(Us) — (K < 2¢ (3.14)

for ¢ = 0, 1. Define
K = Ko\Ul CEo\El. (315)

Then K is a compact set and
Eo\ By C (Ey\ Ko) U (Ko \Up)U Uy \ Ey).
By definition of an outer measure this implies
v(Eg\ Ev) <v(Ep\ Ko) +v(Kog\Uy) +v(Up \ Er) < v(K) +4e.

Here the last inequality follows from the definition of K in (3.15) and the
inequalities in (3.14]). Since € > 0 was chosen arbitrarily it follows that

v(Ey\ Ey) =sup{v(K)|K C Ey\ Ei, K is compact}
and hence Ey \ E; € A.. With this understood it follows from Step 1 that
EyUE, = (Ey\ E1)UE, € A, EoNE, =Ey\ (Ep\ Ey) € A.

This proves Step 2.
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Step 3. A is a o-algebra.

First, X € A because K € A, for every compact set K C X.
Second, assume A € A and let K C X be a compact set. Then by
definition AN K € A.. Moreover K € A, and hence, by Step 2,

ANK=K\(ANK) € A..

Since this holds for every compact set K C X we have A° € A..
Third, let A; € A for i € N and denote

A= D A;.
i=1

Fix a compact set K C X. Then

ANK e A
for all 7 by definition of A. Hence, by Step 2

B =A,NKe¢c A,
for all + and hence, again by Step 2
E; =B\ (BiU---UB;_;) € A,

for all 7. The sets E; are pairwise disjoint and

=1

i=1

Since ¥(AN K) < v(K) < oo by condition (a) in Definition [3.11] it follows
from Step 1 that AN K € A.. This holds for every compact set K C X and
hence A € A. This proves Step 3.

Step 4. B C A.

Let I C X be closed. If K C X is compact then F'N K is a closed subset
of a compact set and hence is compact (see Lemma . Thus FNK € A,
for every compact subset K C X and so F' € A. Thus we have proved that
A contains all closed subsets of X. Since A is a g-algebra by Step 3, it also
contains all open subsets of X and thus B C A. This proves Step 4.
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Step 5. Let AC X. Then A€ A, if and only if A € A and v(A) < cc.
If Ae A, then AN K € A, for every compact set K C X by Step 2 and
hence A € A. Conversely, let A € A such that v(A) < co. Fix a constant
e > 0. By condition (c¢) in Definition [3.11} there exists an open set U C X
such that A C U and v(U) < oo. By condition (d) in Definition there
exists a compact set K C X such that
K cU, v(K)>vU) —e.
Since K,U € A, and U = (U \ K) U K it follows from Step 1 that
vU\K)=v({U)—-v(K)<e.
Moreover, AN K € A, because A € A. Hence it follows from the definition
of A, that there exists a compact set H C AN K such that
v(H) > v(ANK)—c¢
= V(AN (A\K))—¢
v(A) —v(A\K) —¢
v(A) —v(U\K) —¢
v(A) — 2e.

AVARAVARLYS

Since € > 0 was chosen arbitrarily it follows that
v(A) =sup{v(K)|K C A, K is compact}
and hence A € A.. This proves Step 5.

Step 6. p:= v|4 is an outer reqular extended Borel measure and p is inner
reqular on open sets.

We prove that p is a measure. By definition () = 0. Now let A; € A be
a sequence of pairwise disjoint measurable sets and define A := (J;=, 4;. If
p(A;) < oo for all i then A; € A. by Step 5 and hence p(A) = >, u(A4;)
by Step 1. If v(A;) = oo for some i then p(A) > u(A;) and so p(A) = oc.
Thus p is a measure. Moreover, B C A by Step 4, u(K) < oo for every
compact set K C X by condition (a) in Definition [3.11] s is outer regular
by condition (c) in Definition , and g is inner regular on open sets by
condition (d) in Definition [3.11] This proves Step 6.

Step 7. (X, A, ) is a complete measure space.

If £ C X satisfies v(E) = 0 then F € A, by definition of 4. and hence
E € A by Step 5. This proves Step 7 and Theorem [3.12 n
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3.3 The Riesz Representation Theorem

Let (X,U) be a locally compact Hausdorff space and B be its Borel o-algebra.
A function f: X — R is called compactly supported if its support

supp(f) := {z € X | f(z) # 0}

is a compact subset of X. The set of compactly supported continuous func-
tions on X will be denoted by

Ce(X) = {f:X—>]R

f is continuous and
supp(f) is a compact subset of X |

Thus a continuous function f : X — R belongs to C.(X) if and only if there
exists a compact set K C X such that f(x) =0 for all z € X \ K. The set
C.(X) is a real vector space.

Definition 3.13. A linear functional A : C.(X) — R is called positive if
fz0 = Af)=0
for all f € Co(X).

The next lemma shows that every positive linear functional on C.(X)
is continuous with respect to the topology of uniform convergence when
restricted to the subspace of functions with support contained in a fixed
compact subset of X.

Lemma 3.14. Let A : C.(X) — R be a positive linear functional and let
fi € Co(X) be a sequence of compactly supported continuous functions that

converges uniformly to f € C.(X). If there exists a compact set K C X such
that supp(f;) C K for alli € N then A(f) = lim; oo A(f3).

Proof. Since f; converges uniformly to f the sequence
g; := sup|fi(z) — f(z)]
zeX

converges to zero. By Urysohn’s Lemma there exists a compactly sup-
ported continuous function ¢ : X — [0, 1] such that ¢(z) =1 for all z € K.
This function satisfies —e;¢0 < f; — f < g;¢ for all i. Hence

—eiM(@) < A(fi) — A(f) < &il(9),

because A is positive, and hence |A(f;) — A(f)| < g;A(¢) for all 7. Since ¢;
converges to zero so does [A(f;) — A(f)| and this proves Lemma [3.14] O
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Let p: B — [0,00] be a Borel measure. Then every continuous function
f X — R with compact support is integrable with respect to u. Define the
map A, : C.(X) = R by

Mh) = [t (3.16)

Then A, is a positive linear functional. The Riesz Representation Theorem
asserts that every positive linear functional on C.(X) has this form. It also
asserts uniqueness under certain regularity hypotheses on the Borel measure.
The following theorem includes two versions of the uniqueness statement.

Theorem 3.15 (Riesz Representation Theorem). Let A : C.(X) — R
be a positive linear functional. Then the following holds.

(i) There exists a unique Radon measure jio : B — [0, 00] such that A,,, = A.

(ii) There exists a unique outer regular Borel measure py : B — [0, 00] such
that py s inner regular on open sets and A, = A.

(iii) The Borel measures po and py in (i) and (i) agree on all compact sets
and on all open sets. Moreover, py(B) < py(B) for all B € B.

(iv) Let u : B — [0,00| be a Borel measure that is inner reqular on open
sets. Then A, = A if and only if po(B) < p(B) < i (B) for all B € B.

Proof. The proof has nine steps. Step 1 defines a function v : 2% — [0, oo,
Step 2 shows that it is an outer measure, and Steps 3, 4, and 5 show that it
satisfies the axioms of Definition [3.11] Step 6 defines y; and Step 7 shows
that A,, = A. Step 8 defines p, and Step 9 proves uniqueness.

Step 1. Define the function vy : U — [0, 00] by
vu(U) == sup {A(f) | f € Co(X), 0< f <1, supp(f) C U} (3.17)
for every open set U C X and define v : 2% — [0, o0]
v(A) :=inf{vy(U)|ACU C X, U is open} (3.18)

for every subset A C X. Then v(U) = vy(U) for every open set U C X.

If U,V C X are open sets such that U C V then v4,(U) < v4(V) by definition.
Hence v(U) = inf {vy(V)|U CV C X, V is open} = v, (U) for every open
set U C X and this proves Step 1.
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Step 2. The function v : 2% — [0,00] in Step 1 is an outer measure.

By definition v(0) = vy (0) = 0. Since vy (U) < vy (V) for all open sets
U,V C X with U C V, it follows also from the definition that v(A) < v(B)
whenever A C B C X. Next we prove that for all open sets U,V C X

v(U UV < (U + g (V). (3.19)

To see this, let f € C.(X) such that 0 < f <1 and K :=supp(f) CUUV.
By Theorem there exist functions ¢, € C.(X) such that

supp(¢) C U, supp(y) CV, ¢, >0, ¢+¢ <1, (¢+¥)|x=
Hence f = ¢f + ¢ f and hence
A(f) =Aof +4f) = Mof) + AW f) < vu(U) + vu(V).
This proves .

Now choose a sequence of subsets A; C X and define A := [J;=, A;. We

must prove that
<> u(A). (3.20)
i=1

If there exists an i € N such that v(A;) = oo then v¥(A) = 0o because A; C A
and hence Y .7, v(4;) = 0o = v(A). Hence assume v(A;) < oo for all i. Fix
a constant ¢ > 0. By definition of v in there exists a sequence of open
sets U; C X such that

Ai c U, Vu(Ui) < V(AJ + 2_i5.

Define U := |J;2, U;. Let f € C.(X) such that 0 < f <1 and supp(f) C U.
Since f has compact support, there exists an integer £k € N such that
supp(f) C Ule U;. By definition of v, and (3.19) this implies

A(f) S l/u(U1U"'UUk)
< wu(Uy) + -+ vy (Us)
< v(A) 4 v(Ay) +e

Hence A(f) <> o2, v(A;) + ¢ for every f € C.(X) such that 0 < f <1 and
supp(f) C U. This implies

v(A) Z

i=1
by definition of 14,(U) in (3.17). Thus v(A) < ZZ L V(A;) +¢€ for every € > 0
and hence v(A) < >~ v(A;). This proves and Step 2.
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Step 3. Let U C X be an open set. Then

v (U) =sup {v(K)|K C U, K is compact } . (3.21)

Let f € C.(X) such that
0<f<1,  K:=supp(f)CU.

Then it follows from the definition of v, in (3.17) that A(f) < vy (V) for
every open set V' C X with K C V. Hence it follows from the definition of

v in that
A(f) S v(K).

Hence

I/u(U)

sup {A(f) | f € Ce(X),0< f <1, supp(f) C U}
sup{V(K) | KcU K is Compact}

v(U)

vy (U).

IA A

Hence vy(U) = sup{v(K) | K C U, K is compact} and this proves Step 3.
Step 4. Let K C X be an compact set. Then

v(K) =inf {A(f) | f € C(X), f >0, flx =1}. (3.22)

In particular, v(K) < co.
Define
a:=inf {A(f)| f € C(X), f >0, flx =1}.

We prove that a < v(K). Let U C X be any open set containing K. By
Urysohn’s Lemma there exists a function f € C.(X) such that

0<f<1,  supp(f)CU,  flg=1
Hence
a<A(f) <wvyU).

This shows that a < 1(U) for every open set U C X containing K. Take
the infimum over all open sets containing K and use the definition of v in

equation (3.18) to obtain a < v(K).
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We prove that v(K) < a. Choose a function f € C.(X) such that f >0
and f(z) =1 for all z € K. Fix a constant 0 < o < 1 and define

Uy :={x e X|f(x)>a}.
Then U, is open and K C U,. Hence
V(K) <y (Uy).

Moreover, every function g € C.(X) with 0 < g < 1 and supp(g) C U,
satisfies ag(z) < a < f(x) for x € U,, hence ag < f, and so aA(g) < A(f).
Take the supremum over all such ¢ to obtain awvy,(U,) < A(f) and hence

W(K) < wU) < A(f)
This shows that v(K) < LA(f) for all @ € (0,1) and hence
v(K) < A(f).
Since this holds for every function f € C.(X) with f > 0 and f|x = 1 it
follows that v(K) < a. This proves Step 4.

Step 5. Let Ky, K1 C X be compact sets such that KoN K, = 0. Then
I/(K() U Kl) = V(Ko) + I/(Kl).

The inequality v(Ky U K;) < v(Ky) + v(K;) holds because v is an outer
measure by Step 2. To prove the converse inequality choose f € C.(X) such
that

0<f<1, f|KOEOa f|K151'

That such a function exists follows from Urysohn’s Lemma[A. I with K := K,
and U := X \ Ky. Now fix a constant ¢ > 0. Then it follows from Step 4
that there exists a function g € C.(X) such that

920,  glgux, =1, Alg) <v(KoUK)) +e.
It follows also from Step 4 that
v(Ko) +v(K1) <AL= f)g) + A(fg) = AMg) <v(Ko+ Ki) +e.

Hence v(Ky) + v(K;) < v(Ky + Ki) + € for every ¢ > 0 and therefore
v(Ky) + v(K,) < v(Ky+ K;). This proves Step 5.
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Step 6. The function py := vlg : B — [0,00] is an outer regular Borel
measure that s inner reqular on open sets.

The function v is an outer measure by Step 2. It satisfies condition (a) in
Definition by Step 4, it satisfies condition (b) by Step 5, it satisfies
condition (c) by Step 1, and it satisfies condition (d) by Step 3. Hence v is
a Borel outer measure. Hence Step 6 follows from Theorem [3.12]

Step 7. Let jy be as in Step 6. Then A, = A.
We will prove that

A(f) < /X f (3.23)

for all f € C.(X). Once this is understood, it follows that

SA() = A(—f) < /X £) dyin = / fdm

and hence [y fdu < A(f) for all f € Co(X). Thus A(f) = [, fdp, for all
f € C.(X), and this proves Step 7.

Thus it remains to prove the inequality . Fix a continuous function
f X — R with compact support and denote

K = supp(f), a:= inf f(x), b := sup f(z).

zeX zeX
Fix a constant € > 0 and choose real numbers
Yo<a<yy <Y< -+ <Yp1<yYp=2>0

such that
Yi — Yi—1 <€, 1=1,...,n.

Fori=1,...,n define

Ei:={z€K|y1<[f(z)<uy}.

Then FE; is the intersection of the open set f~1((y;_1,00)) with the closed set
S~ ((—o0,¥:]) and hence is a Borel set. Moreover E; N E; = for i # j and
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Since p1; is outer regular there exist open sets Uy, ..., U, C X such that
€
E; C Ui, /ubl(UZ) < /UL1(E1> + E, Supf <Y; t+¢€ (324)
U;
for all 7. (For each i, choose first an open set that satisfies the first two

conditions in (3.24) and then intersect it with the open set f~*((—o0, y;+¢)).)
By Theorem [A.4] there exist functions ¢1, ..., ¢, € C.(X) such that

¢ >0, supp(¢) CU;, > <1, > dlx=1 (3.25)
i=1 i=1
It follows from (3.24)), (3.25]), and Step 4 that
= Z¢if7 oif < (yi + )i,
i=1

m(K) < ZM@% Adi) < (Us) < pa(E;) + %
Hence

A(f) = DA

n

< D_mi+oA@)
= D (it lal +£)AG) — la] D A(&)

i=1
n n

= Z(yZ + &) (Ey) +%Z(yi + |af +¢)

i=1 i=1
n

< > (v — ) m(E) +e(2m(K) + b+ |a| +¢)

=1
< / fdps 4+ e(2p1(K) 4+ b+ |a| +¢).
X

Here we have used the inequality y; + |a| +& > 0. Since € > 0 can be chosen
arbitrarily small it follows that A(f) < [, fdpuy. This proves (3.23)).
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Step 8. Define p : B — [0, 00] by
po(B) :=sup {v(K)| K C B, K is compact}

Then pg is a Radon measure, A, = A, and p1o and py satisfy (iii) and (iv).

It follows from Step 6 and part (i) of Theorem [3.8|that p is a Radon measure
and it follows from Step 7 and part (iii) of Theorem [3.8 that A,, = A,, = A.
That the measures o and gy satisfy assertions (iii) and (iv) follows from
parts (i) and (iv) of Theorem [3.8]

Step 9. We prove uniqueness in (i) and (ii).

By definition p(K) = v(K) = py (K) for every compact set K C X. Second,
it follows from and Steps 1 and 3 that ug(U) = vy(U) = v(U) = uy(U) for
every open set U C X. Third, Steps 7 and 8 assert that A,, = A,, = A.
Hence it follows from part (iv) of Theorem that every Borel measure
p: B — [0, 00] that is inner regular on open sets and satisfies A, = A agrees
with v on all compact sets and on all open sets. Hence every Radon measure
p: B — [0,00] that satisfies A, = A is given by

u(B) =sup {v(K)| K C B, K is compact} = 19(B)

for every B € B. Likewise, every outer regular Borel measure p : B — [0, 00|
that is inner regular on open sets and satisfies A, = A is given by

u(B) =inf {v(U)|BCUC X, Uisopen} = v(B) = u1(B)
for every B € B. This proves Step 9 and Theorem [3.15| n
The following corollary is the converse of Theorem [3.8|
Corollary 3.16. Let uo : B — [0,00] be a Radon measure and define
p1(B) :=inf{po(U)|B C U C X, U is open} forall B€ B. (3.26)
Then 11 is an outer reqular Borel measure, is inner reqular on open sets, and
po(B) =sup {u(K) | K C B, K is compact} forall Be B. (3.27)

Proof. Let u; be the unique outer regular Borel measure on X that is inner
regular on open sets and satisfies A, = A,,. Then Theorem asserts
that pg and pp agree on all compact sets and all open sets. Since p; is outer
regular, it follows that u; is given by . Since o is inner regular it

follows that pg satisfies (3.27)). This proves Corollary [3.16] O
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Corollary 3.17. Every Radon measure is outer reqular on compact sets.
Proof. Equation (3.26|) with B = K compact and po(K) = p1(K). O

The next theorem formulates a condition on a locally compact Hausdorff
space which guarantees that all Borel measures are regular. The condition
(every open subset is o-compact) is shown below to be strictly weaker than
second countability.

Theorem 3.18. Let X be a locally compact Hausdorff space.

(i) Assume X is o-compact. Then every Borel measure on X that is inner
reqular on open sets is reqular.

(i) Assume every open subset of X is o-compact. Then every Borel measure
on X is reqular.

Proof. We prove (i). Let pu: B — [0, 00] be a Borel measure that is inner reg-
ular on open sets and let pg, p1 : B — [0, 00| be the Borel measures associated
to A := A, in parts (i) and (ii) of the Riesz Representation Theorem
Since p is inner regular on open sets, it follows from part (iii) of Theorem [3.15
that uo(B) < u(B) < py(B) for all B € B. Since X is o-compact, it follows
from part (ii) of Theorem that pug = u = pp. Hence p is regular.

We prove (ii). Let u: B — [0,00] be a Borel measure. We prove that u
is inner regular on open sets. Fix an open set U C X. Since U is o-compact,
there exists a sequence of compact sets K; C U such that K; C K;,, for all
i€ Nand U = J;2, K;. Hence pu(U) = lim;_,o u(K;) by Theorem , SO

pu(U) =sup{u(K)| K C U and K is compact} .

This shows that p is inner regular on open sets and hence it follows from (i)
that p is regular. This proves Theorem [3.18| O

Example 3.9/ shows that the assumption that every open set is o-compact
cannot be removed in part (ii) of Theorem even if X is compact. Note
also that Theorem [3.18| provides another proof of regularity for the Lebesgue
measure, which was established in Theorem [2.13]

Corollary 3.19. Let X be a locally compact Hausdorff space such that every
open subset of X is o-compact. Then for every positive linear functional
A Co(X) — R there exists a unique Borel measure ji such that A, = A.

Proof. This follows from Theorem and part (ii) of Theorem [3.18 [
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Remark 3.20. Let X be a compact Hausdorff space and let C(X) = C.(X)
be the space of continuous real valued functions on X. From a functional
analytic viewpoint it is interesting to understand the dual space of C'(X),
i.e. the space of all bounded linear functionals on C(X) (Definition [4.23).
Exercise below shows that every bounded linear functional on C(X) is
the difference of two positive linear functionals. If every open subset of X
is o-compact it then follows from Corollary that every bounded linear
functional on C(X) can be represented uniquely by a signed Borel measure.

(See Definition in Section [5.3| below.)

An important class of locally compact Hausdorff spaces that satisfy the
hypotheses of Theorem and Corollary are the second countable
ones. Here are the definitions. A basis of a topological space (X,U) is a
collection V C U of open sets such that every open set U C X is a union of
elements of V. A topological space (X,U) is called second countable if it
admits a countable basis. It is called first countable if, for every x € X,
there is a sequence of open sets W;, @ € N, such that x € W, for all 7 and
every open set that contains x contains one of the sets W;.

Lemma 3.21. Let X be a locally compact Hausdorff space.
(i) If X is second countable then every open subset of X is o-compact.

(ii) If every open subset of X is o-compact then X is first countable.

Proof. We prove (i). Let V be a countable basis of the topology and let
U C X be an open set. Denote by V(U) the collection of all sets V' € V such
that V C U and V is compact. Let 2 € U. By Lemma there is an open
set W C X with compact closure such that x € W ¢ W C U. Since V is a
basis of the topology, there is an element V' € V such that x € V- C W. Hence
V is a closed subset of the compact set W and so is compact by Lemma .
Thus V € V(U) and x € V. This shows that

v= J v

Vev()

Since V is countable so is V(U). Choose a bijection N — V(U) : i — V; and
define
Ki 2:V1U"'Uvi

forv € N. Then K; C K;, forallt and U = U;’il K;. Hence U is o-compact.
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We prove (ii). Fix an element x € X. Since X is a Hausdorff space,
the set X \ {z} is open and hence is o-compact by assumption. Choose a
sequence of compact sets K; C X \ {z} such that K; C K;;; for all i € N and
U2, Ki = X \ {z}. Then each set U; := X \ K, is open and contains z. By
Lemma[A 3] there exists a sequence of open sets V; C X with compact closure
such that x € V; C V; C Ui = X\ K; for all i € N. Define W; := Vin---NV;
for i € N. Then W; C (), (X \ K;) = X \ K; and hence (.2, W; = {z}.
This implies that each open set U C X that contains x also contains one of
the sets W;. Namely, if # € U and U is open, then W1 \ U is a compact set
contained in X \ {z} = U2, (X \ W), hence there exists a j € N such that
Wi\U C J_,(X\W;) = X \ W, and so W; C U. Thus the sets W form
a countable neighborhood basis of x and this proves Lemma [3.21] O

Example 3.22. The Alexandrov Double Arrow Space is an example
of a compact Hausdorff space in which every open subset is o-compact and
which is not second countable. It is defined as the ordered space (X, <),
where X :=[0,1] x {0,1} and < denotes the lexicographic ordering

si<d) = |

s<tor
s=tandt=0and j =1.

The topology U C 2% is defined as the smallest topology containing the sets
Se={r € X|a=<z}, Py:={xe X|x<b}, a,be X.

It has a basis consisting of the sets S,, P,, S, N P, for all a,b € X.

This topological space (X,U) is a compact Hausdorff space and is per-
fectly normal, i.e. for any two disjoint closed subsets Fy, F; C X there
exists a continuous function f : X — [0, 1] such that

Fo=f70), F=/["().

(For a proof see Dan Ma’s Topology Blog [12].) This implies that every open
subset of X is o-compact. Moreover, the subsets

Yo :=(0,1) x {0},  Y;:=(0,1) x {1}

are both homeomorphic to the Sorgenfrey line, defined as the real axis
with the (nonstandard) topology in which the open sets are the unions of
half open intervals [a,b). Since the Sorgenfrey line is not second countable
neither is the double arrow space (X,U). (The Sorgenfrey line is Hausdorff
and perfectly normal, but is not locally compact because every compact
subset of it is countable.)



108 CHAPTER 3. BOREL MEASURES

3.4 Exercises

Exercise 3.23. This exercise shows that the measures pig, 41 in Theorem
need not agree. Let (X, d) be the metric space given by X := R? and

0, if T1 = To,

(o). o) = =l + { 05T

Let B C 2% be the Borel o-algebra of (X, d).
(i) Show that (X, d) is locally compact.

(ii) Show that for every compactly supported continuous function f : X — R
there exists a finite set Sy C R such that supp(f) C Sy x R.

(iii) Define the positive linear functional A : C.(X) — R by

A= " ) dy.

x€Sy Y T

(Here the integrals on the right are understood as the Riemann integrals or,
equivalently by Theorem [2.24] as the Lebesgue integrals.) Let p: B — [0, 00]
be a Borel measure such that

/ fdu=A(f) for all f € C.(X).

Prove that every one-element subset of X has measure zero.
(iv) Let p be as in (iii) and let £ := R x {0}. This set is closed. If y is inner
regular prove that u(E) = 0. If u is outer regular, prove that u(E) = oc.

Exercise 3.24. This exercise shows that the Borel assumption cannot be
removed in Theorem[3.18 (The measure x in part (ii) is not a Borel measure. )
Let (X,U) be the topological space defined by X := NU {oo} and

U:={UCX|UCNor #U° < 0} .

Thus (X,U) is the (Alexandrov) one-point compactification of the set N
of natural numbers with the discrete topology. (If oo € U then the condition
#U*® < 0o is equivalent to the assertion that U is compact.)

(i) Prove that (X,U) is a compact Hausdorff space and that every subset
of X is o-compact. Prove that the Borel o-algebra of X is B = 2.

(ii) Let u : 2% — [0,00] be the counting measure. Prove that u is inner
regular, but not outer regular.
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Exercise 3.25. Let (X,Ux) and (Y, Uy ) be locally compact Hausdorff spaces
and denote their Borel o-algebras by By C 2%¥ and By C 2¥. Let¢: X — Y
be a continuous map and let ux : Bx — [0, 00] be a measure.

(i) Prove that By C ¢.Bx (See Exercise [1.69).

(ii) If px is inner regular show that ¢.px|p, is inner regular.

(iii) Find an example where px is outer regular and ¢.px|p, is not outer
regular. Hint: Consider the inclusion of N into its one-point compactification
and use Exercise[3.24. (In this example px is a Borel measure, however, ¢, pux
is not a Borel measure.)

Exercise 3.26. Let (X, d) be a metric space. Prove that (X, d) is perfectly
normal, i.e. if Fyy, F} C X are disjoint closed subsets then there is a continuous
function f : X — [0,1] such that Fy = f~1(0) and F; = f~!(1). Compare
this with Urysohn’s Lemma[A.1] Hint: An explicit formula for f is given by

d(l’, Fo)

fx) = i Fo) - dx. )’

where

d(xz, F) := inf d(z,y)

yeF
forx € X and F C X.

Exercise 3.27. Recall that the Sorgenfrey line is the topological space
(R,U), where U C 2% is the smallest topology that contains all half open
intervals [a,b) with @ < b. Prove that the Borel o-algebra of (R,U) agrees
with the Borel g-algebra of the standard topology on R.

Exercise 3.28. Recall from Example that the Double Arrow Space is
X :=1[0,1] x {0,1}

with the topology induced by the lexicographic ordering. Prove that B C X
is a Borel set for this topology if and only if there is a Borel set E C [0, 1]
and two countable sets F,G C X such that

B=((Ex{0,1))UF)\G. (3.28)

Hint 1: Show that the projection f : X — [0, 1] onto the first factor is
continuous with respect to the standard topology on the unit interval.

Hint 2: Denote by B C 2% the set of all sets of the form (3.28)) with £ C [0, 1]
a Borel set and F, G C X countable. Prove that B is a o-algebra.
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Exercise 3.29 (The Baire o-algebra).
Let (X,U) be a locally compact Hausdorff space and define

ICa::{KcX’

K is compact and there is a sequence of open sets
U; such that Uy C U; for all i and K = (2, U;

Let
B, c 2%

be the smallest o-algebra that contains K,. It is contained in the Borel o-
algebra B C 2% and is called the Baire o-algebra of (X,U). The elements of
B, are called Baire sets. A function f : X — R is called Baire measurable
if f~1(U) € B, for every open set U C R. A Baire measure is a measure
By — [0, 00] such that u(K) < oo for all K € K.

(i) Let f : X — R be a continuous function with compact support. Prove
that f~!(c) € K, for every nonzero real number c.

(ii) Prove that B, is the smallest o-algebra such that every continuous func-
tion f: X — R with compact support is B,-measurable.

(iii) If every open subset of X is o-compact prove that B, = B. Hint:
Show first that every compact set belongs to K, and then that every open
set belongs to B,.

Exercise 3.30. (i) Let X be an uncountable set and let U := 2% be the
discrete topology. Prove that B C X is a Baire set if and only if B is
countable or has a countable complement. Define p: B, — [0, 1] by

(B) := 0, if B is countable,
" " | 1, if B¢is countable.

Show that [, fdu =0 for every f € C.(X). Thus positive linear functionals
A : C.(X) — R need not be uniquely represented by Baire measures.

(ii) Let X be the compact Hausdorff space of Example Prove that the
Baire sets in X are the countable subsets of X \ {x} and their complements.

(iii) Let X be the Stone-Cech compactification of N in Example below.
Prove that the Baire sets in X are the subsets of N and their complements.

(iv) Let X = R? be the locally compact Hausdorff space in Exercise
(with a nonstandard topology). Show that B C X is a Baire set if and only if
the set B, := {y € R|(z,y) € B} is a Borel set in R for every x € R and one
of the sets Sy := {r € R| B, # 0} and S; := {z € R| B, # R} is countable.
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Exercise 3.31. Let (X,U) be a locally compact Hausdorff space and let
B, cBc2¥

be the Baire and Borel o-algebras. Let % (X)) denote the real vector space of
all functions f : X — R. For F C .#(X) consider the following conditions.
(a) C.(X) C F.

(b) If f; € F is a sequence converging pointwise to f € .%#(X) then f € F.
Let F, C #(X) be the intersection of all subsets F C % (X) that satisfy
conditions (a) and (b). Prove the following.

(i) F. satisfies (a) and (b).

(ii) Every element of F, is Baire measurable. Hint: The set of Baire mea-
surable functions on X satisfies (a) and (b).

(iii) If f € F, and g € C.(X) then f+ g € F,. Hint: Let g € C.(X). Then
the set F, — g satisfy (a) and (b) and hence contains F,.

(iv) If f,g € F, then f+ g € F,. Hint: Let g € F,. Then the set F, — ¢
satisfy (a) and (b) and hence contains F,.

(v) If f € F, and ¢ € R then ¢f € F,. Hint: Fix a real number ¢ # 0.
Then the set ¢~ 'F, satisfy (a) and (b) and hence contains F,.

(vi) If f € F,and g € C.(X) then fg € F,. Hint: Fix a real number ¢ such
that ¢+ g(x) > 0 for all z € R. Then the set (¢ + g)~'F, satisfy (a) and (b)
and hence contains F,. Now use (iv) and (v).
(vii) If A C X such that x4 € F, and f € F, then fx4 € F,. Hint: The
set (14 xa) ' F, satisfy (a) and (b) and hence contains F,.
(viii) The set
A= {ACX|XA€-Fa0rXX\A€~Fa}

is a o-algebra. Hint: If x4, xp € Fa then xaup = xa+ xB — xXaxB € Fu. If
Xx\4; Xx\B € Fa then xx\(aup) = Xxx\axx\B € Fa- If x4, Xxx\5 € Fa then
XX\(AUB) = X(X\A)N(X\B) = Xx\B — XaXx\B € Fa. Thus

A BeA == AUB e A.

(ix) A = B,. Hint: Let K € K,. Use Urysohn’s Lemma to construct a
sequence g; € C.(X) that converges pointwise to Y-

(x) For every f € F, there exists a sequence of compact sets K; € K, such
that K; C Kji for all i and supp(f) C (J;cy K- Hint: The set of functions
f: X — R with this property satisfies conditions (a) and (b).
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Exercise 3.32. Show that, for every locally compact Hausdorff space X and
any two Borel measures f, (1 as in Theorem there is a Baire set N C X
such that po(N) =0 and po(B) = p1(B) for every Baire set B C X \ N.
Hint 1: Show first that

po(B) = sup {uo(K) | K € Ko, K C B}, (3.29)

where IC, is as in Exercise |3.29] To see this, prove that the right hand side
of equation defines a Borel measure p on X that is inner regular on
open sets and satisfies u < po and A, = Ay,

Hint 2: Suppose there exists a Baire set N C X such that po(N) < p (V).
Show that u1(N) = oo and that N can be chosen such that po(/N) = 0. Next
show that x x\n € F,, where F, is as in Exercise , and deduce that X\ NV
is contained in a countable union of compact sets.

Example 3.33. Let X be the Stone-Cech compactification of N discussed
in Example below and denote by B, C B C 2% the Baire and Borel o-
algebras. Thus B C X is a Baire set if and only if either B C Nor X\ B C N.
(See part (iii) of Exercise [3.30}) For a Borel set B C X define

()= 3 L {w@)]| f0S T
As in Example denote by Xy C X the union of all open sets U C X
with 1o(U) < oo. Then the restriction of py to Xo is a Radon measure, the
restriction of py to Xy is outer regular and is inner regular on open sets, and
1o is given by as in Theorem . Moreover, Xy \ N is a Baire set in X
and p1o(Xo \ N) = 0 while p1 (X, \ N) = co. Thus we can choose N := X\ N
in Exercise [3.32| and py and pq do not agree on the Baire g-algebra.

Example 3.34. Let X = R? be the locally compact Hausdorff space in
Example|3.23|and let pg, 111 be the Borel measures of Theorem [3.15|associated
to the linear functional A : C.(X) — R in that example. Then it follows from
part (iv) of Exercise that po(B) = p1(B) for every Baire set B C X.
Thus we can choose N = ) in Exercise [3.32] However, there does not exist
any Borel set N C X such that uo(N) = 0 and po agrees with p; on all Borel
subsets of X \ N. (A set N C X is a Borel set with po(/N) = 0 if and only if
N, :={y € R|(x,y) € N} is a Borel set and m(N,) = 0 for all z € R.)

Exercise 3.35. Let Z be the disjoint union of the locally compact Hausdorff
spaces X in Example and X = R? in Example [3.34 Find Baire sets
By C Xy and B C X whose (disjoint) union is not a Baire set in Z.



Chapter 4
LP Spaces

This chapter discusses the Banach space LP(u) associated to a measure space
(X, A, 1) and a number 1 < p < co. Section introduces the inequalities
of Holder and Minkowski and Section shows that LP(u) is complete. In
Section we prove that, when X is a locally compact Hausdorff space, u is
a Radon measure, and 1 < p < oo, the subspace of continuous functions with
compact support is dense in LP(u). If in addition X is second countable it
follows that LP(u) is separable. When 1 < p < oo (or p = 1 and the measure
space (X, A, u) is localizable) the dual space of LP () is isomorphic to L9(u),
where 1/p+ 1/q = 1. For p = 2 this follows from elementary Hilbert space
theory and is proved in Section For general p the proof requires the
Radon-Nikodym theorem and is deferred to Chapter Some preparatory
results are proved in Section [4.5]

4.1 Holder and Minkowski

Assume throughout that (X, .4, i) is a measure space and that p, ¢ are real
numbers such that

1 1
-+ -=1, 1 <p<oo, 1 <qg< o (4.1)
P q
Then any two nonnegative real numbers a and b satisfy Young’s inequality
1 1
ab < —aP + —b? (4.2)
p q

and equality holds in (4.2)) if and only if a? = b?. (Exercise: Prove this by
examining the critical points of the function (0,00) — R : z — %xp —xb.)

113
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Theorem 4.1. Let f,g : X — [0,00] be measurable functions. Then f and
g satisfy the Holder inequality

/ngduﬁ (/X f”du> " (/ng du)l/q (4.3)

and the Minkowski inequality

1/p 1/p 1/p
(/X(erg)”du) < (/Xf”du) + (/Xgpd,u) . (449)
Proof. Define
1/p 1/q
A= Pd B = d .
(fra) o= (fra)

If A=0then f = 0 almost everywhere by Lemma[l.49] hence fg = 0 almost
everywhere, and hence [ + fgdp =0 by Lemma This proves the Holder
inequality in the case A =0. If A =00 and B > 0 then AB = oo and
SO holds trivially. Interchanging A and B if necessary, we find that

holds whenever one of the numbers A, B is zero or infinity. Hence assume
0<A<ooand 0 < B < oco. Then it follows from (4.2)) that

Jx fgdp /fgd
~aB  JyaB™

S LCE 1)

Ufx fPdp 1 [ g"dp

p AP q Bs
1 1

= ——|——
P q

- 1.

This proves the Holder inequality. To prove the Minkowski inequality, define

a:= </Xf”du)l/p7 b= </Xgpdu)l/p7 = (/X(f+g)pdu)1/p'

We must prove that ¢ < a + b. This is obvious when a = oo or b = oc.
Hence assume a,b < oo. We first show that ¢ < oco. This holds because
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f<(fP+g?)Y? and g < (f? + g°)"/P, hence f 4 g < 2(fP + g?)/?, therefore
(f+g)? < 2°(fP+g¢P), and integrating this inequality and raising the integral
to the power 1/p we obtain ¢ < 2(a? + b”)Y/? < co. With this understood, it
follows from the Holder inequality that

o = /X F(f + Pt dpu+ /X o(f + g dp

< ( /X fpdu)l/p ( /X (f+g)(”‘”qdu)1/q
+ ( /X 9 du) " ( /X (f +g)® 1 du) -

= (a+0) (/X(f +9)° du) o

= (a+b)c .
Here we have used the identity pg — ¢ = p. It follows that ¢ < a + b and this
proves Theorem [.1] O

Exercise 4.2. (i) Assume 0 < [, fPdp < 0o and 0 < [, ¢g?du < co. Prove
that equality holds in if and only if there exists a constant a > 0
such that g7 = o f? almost everywhere. Hint: Use the proof of the Holder
inequality and the fact that equality holds in (4.2)) if and only a? = b9.

(ii) Assume 0 < [, fPdpu < oo and 0 < [, ¢”dp < oo. Prove that equality
holds in (4.4)) if and only if there is a real number A > 0 such that g = \f
almost everywhere. Hint: Use part (i) and the proof of the Minkowski
inequality.

4.2 The Banach Space L?(u)

Definition 4.3. Let (X, A, i) be a measure space and let 1 < p < oo. Let
f: X — R be a measurable function. The LP-norm of f is the number

111 = ([ 1P a) v (15)

A function f : X — R is called p-integrable or an LP-function if it is
measurable and || f||, < co. The space of LP-functions is denoted by

LP(p) == {f : X > R| f is A-measurable and 1 £1l, < oo} . (4.6)
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It follows from the Minkowski inequality (4.4) that the sum of two LP-
functions is again an LP-function and hence L£P(u) is a real vector space.
Moreover, the function

LP(p) = 0,00) : fr= [l

satisfies the triangle inequality

1f +gll, < A1, + Nlgll,
for all f,g € LP(u) by (4.4) and
IAFIL, = TALILAL,

for all A € R and f € LP(u) by definition. However, in general [|-||, is not
a norm on LP(u) because [|f||, = 0 if and only if f = 0 almost everywhere
by Lemma We can turn the space £P(u) into a normed vector space
by identifying two functions f, g € L£P(u) whenever they agree almost every-
where. Thus we introduce the equivalence relation

fRyg = f =9 p-almost everywhere. (4.7)

Denote the equivalence class of a function f € £P(u) under this equivalence
relation by [f], and the quotient space by

LP(p) := L7 (n) /% . (4.8)

This is again a real vector space. (For p = 1 see Definition [L.51]) The
LP-norm in (4.5) depends only on the equivalence class of f and so the map

LP(p) = 10,00) = [flu = 11,

is well defined. It is a norm on LP(u) by Lemma [1.49] Thus we have defined
the normed vector space LP(u) for 1 < p < co. It is sometimes convenient to
abuse notation and write f € LP(u) instead of [f], € LP(p), always bearing
in mind that then f denotes an equivalence class of p-integrable functions. If

(X, A*, u*) denotes the completion of (X, A, i) it follows as in Corollary
that LP(u) is naturally isomorphic to LP(u*).

Remark 4.4. Assume 1 < p < oo and let f, g € £LP(u) such that

1f+gll, = I1F1L,+ gl (1F1], # 0.

Then it follows from part (ii) of Exercise |4.2| that there exists a real number
A > 0 such that g = Af almost everywhere.
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Example 4.5. If (R", A, m) is the Lebesgue measure space we write
LP(R") := LP(m).
(See Definition [2.2 and Definition [2.11])
Example 4.6. If ;i : 2% — [0, 00] is the counting measure we write
=

Thus the elements of /7 are sequences (z,)nen of real numbers such that

o0 1/p
[(za)ll,, == (lenlp) < .

If we define f : N — R by f(n) := z, for n € N then [(|f[Pdp =3, |x,P.
For p = oo there is a similar normed vector space L>(u) defined next.

Definition 4.7. Let (X, A, 1) be a measure space and let f : X — [0, 00]
be a measurable function. The essential supremum of f is the number
esssup f € [0, 00| defined by

esssup f = inf {c € [0, 00] | f < ¢ almost everywhere} (4.9)
A function f: X — R is called an L*°-function if it is measurable and
[flloo := esssup | f] < oo (4.10)
The set of L>°-functions on X will be denoted by
L) = {f: X = R| f is measurable and esssup|f| < oo}
and the quotient space by the equivalence relation by
() o= £ () /% (4.11)

This is a normed vector space with the norm defined by (4.10)), which depends
only on the equivalence class of f.

Lemma 4.8. For every f € L>(u) there exists a measurable set E € A such
that ((E) = 0 and supx\p|f| = || f]l-

Proof. The set E, := {z € X ||f(z)] > ||fllec +1/n} has measure zero for
all n. Hence E := |J,cy En is also a set of measure zero and |f(z)| < || f|l~
for all z € X \ E. Hence supy, g|f| = || f[|co. This proves Lemma . O
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Theorem 4.9. LP(u) is a Banach space for 1 < p < oo.

Proof. Assume first that 1 < p < oo. In this case the argument is a refine-
ment of the proof of Theorem [1.52] and Theorem [I.53] for the case p = 1. Let
fn € LP(n) be a Cauchy sequence with respect to the norm (4.5). Choose a
sequence of positive integers n; < ng < ng < --- such that

||fnz - fni+1”p < 2_i

for all 7 € N. Define

k 00
gk ‘= Z‘fmﬂ - fnz ) g = Z'fni+1 - fnz
i=1 =1

Then it follows from Minkowski’s inequality (4.4) that

k k
lgll, <> 1 fne = Faa ], < D277 <1
=1 i=1

for all k € N. Moreover, g; < gy, for all k € N and the sequence of functions
gr + X — [0, 00] converges pointwise to the integrable function ¢”. Hence it
follows from the Lebesgue Monotone Convergence Theorem that

= lim g.
k—o0

loll, = Jim ol <1

Hence, by Lemma [[.47], there is a measurable set E € A such that
w(E) =0, g(x) < oo forall ze€ X\ E.

Hence the series Y. | (fn.,, (2) — fn,()) converges absolutely for z € X \ E.
Define the function f: X — R by

f(@) = fu(z +ZnM — fri(2))

for x € X \ E and by f(z) := 0 for x € E. Then the sequence

k-1
S Xx\E = fa Xx\E + Z(fnm — f)Xx\E

=1

converges pointwise to f. Hence f is A-measurable by Theorem [1.24]



4.2. THE BANACH SPACE L (p) 119

We must prove that f € L£P(u) and that lim, o || f — full, = 0. To see
this fix a constant € > 0. Then there exists an integer ny € N such that
[ fn = fill, <€ for all n,m > ng. By the Lemma of Fatou this implies

/|fn_f|pdﬂ - /hnlinﬂfn_fnkXX\E|pd'u
x X
< 11m1nf/|fn Jrxx\e|? dp

= liminf/ | fr — fo [P du
k—oo  [x
< &
for all n > ng. Hence [|f, — f||, < e for all n > ng and hence

Hpr g anOHp + Hf - fno“p S anOHp + e < 00.

Thus f € LP(p) and lim, o || f — full, = 0 as claimed. This shows that
LP(u) is a Banach space for p < oo.

The proof for p = oo is simpler. Let f,, € £%°(u) such that the [f,], form
a Cauchy sequence in L>°(x). Then there is a set £ € A such that

wE) =0, |falle =suplful,  [[fm = fallw = sup[fr — ful  (4.12)
X\E X\E

for all m,n € N. To see this, use Lemma to find null sets E,, E,,, € A
such that SUPX\En’fn| = ||fnlloo and SUPX\Em,n|fm — ful = [fm — anoo for
all m,n € N. Then the union £ of the sets £, and E,,, is measurable and
satisfies (4.12)). Since [f,], is a Cauchy sequence in L*(u) we have

lim ¢, =0, en = sup || frn — fullo

n—o00 m>n
Since |fn(x) — fu(x)] < &, for all m > n and all z € X \ E it follows
that (f,.(z))nen is a Cauchy sequence in R and hence converges for every
x € X\ E. Define f: X — R by f(z) :=lim, . fn(z) for x € X \ E and
by f(z) :=0 for x € E. Then

If = falloo < sup [f(z) = fu(z)[ = sup lim |fin(2) = fo(2)| < en

zeX\E zEX\E M7

for all n € N. Hence || f|loc < || filloo + €1 < 00 and lim, o0 || f — fulloo = 0
This proves Theorem [4.9] O
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Corollary 4.10. Let (X, A, p) be a measure space and let 1 < p < oo. Let
f € LP(u) and let f,, € LP(u) be a sequence such that limy, .« || fn — f, = 0.
If p = oo then f, converges almost everywhere to f. If p < oo then there
exists a subsequence f,, that converges almost everywhere to f.

Proof. For p = oo this follows directly from the definitions. For p < oo choose
a sequence of integers 0 < ny < ny < ng < --- such that || f,, — fallp <277
for all © € N. Then the proof of Theorem shows that f,, converges almost
everywhere to an LP-function g such that lim, , [|f, — g||, = 0. Since the
limit is unique in LP(u) it follows that g = f almost everywhere. O

4.3 Separability

Definition 4.11. Let X be a topological space. A subset S C X is called
dense (in X) if its closure is equal to X or, equivalently, UNS # O for every
nonempty open set U C X. A subset S C X of a metric space is dense if and
only if every element of X is the limit of a sequence in S. The topological
space X s called separable if it admits a countable dense subset.

Every second countable topological space is separable and first countable
(see Lemma . The Sorgenfrey line is separable and first countable but is
not second countable (see Example [3.22)). A metric space is separable if and
only if it is second countable. (If S is a countable dense subset then the balls
with rational radii centered at the points of S form a basis of the topology.)
The Euclidean space X = R" with its standard topology is separable (Q" is
a countable dense subset) and hence is second countable. The next lemma
gives a criterion for a linear subspace to be dense in LP(u).

Lemma 4.12. Let (X, A, 1) be a measure space and let 1 < p < co. Let 2

be a linear subspace of LP(u) such that [xal, € Z for every measurable set
A e A with u(A) < co. Then X is dense in LP(1).

Proof. Let % denote the closure of 2" in LP(u). Then % is a closed linear
subspace of LP(u). We prove in three steps that & = LP(u).

Step 1. If s € LP(u) is a measurable step function then [s], € ¥

Write s = S2'_, aixa, where o; € R\ {0} and 4; = s~ '(o;) € A. Then
P u(A;) = [y loixa,[Pdp < [y ]s|Pdp < oo and hence pu(A4;) < oo for all i.
This implies [x4,], € # for all i. Since & is a linear subspace of LP(u) it
follows that [s], € /. This proves Step 1.
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Step 2. If f € LP(u) and f >0 then [f], € ¥ .

By Theorem [1.26] there is a sequence of measurable step functions s; : X — R
such that 0 < s; < sy < --- and s; converges pointwise to f. Then s; € LP(u)
and hence [s;], € # for all i by Step 1. Moreover, |f — s;|P < fP, fP is
integrable, and | f —s;|P converges pointwise to zero. Hence it follows from the
Lebesgue Dominated Convergence Theorem that lim; e [|f — sill, = 0.
Since [s;], € # for all i and & is a closed subspace of LP(y), it follows that
[f], € #. This proves Step 2.

Step 3. ¥ = LP(u).

Let f € LP(n). Then f* € LP(u), hence [f*], € # by Step 2, and hence
(£l =1f"]u = [f7]u € Z. This proves Step 3 and Lemma [£.12] O

Standing Assumption. Assume throughout the remainder of this section
that (X,U) is a locally compact Hausdorff space, B C 2% is its Borel o-
algebra, p: B — [0,00] is a Borel measure, and fix a constant 1 < p < 0.

Theorem 4.13. If X is second countable then LP(u) is separable.
Proof. See page [122 ]

Example 4.14. If X is an uncountable set with the discrete topology U = 2%
and p : 2% — [0, 00] is the counting measure then X is not second countable
and L£P(u) = LP(u) is not separable.

Theorem 4.15. Assume i is outer reqular and is inner regular on open sets.
Define

S.(X) = {S:X—HR

s is a Borel measurable step function (4.13)
and supp(s) is a compact subset of X '

Then the linear subspaces S,(X)/~ and C.(X)/~ are dense in LP(1). This
continues to hold when p s a Radon measure.

Proof. See page [123 ]

Example 4.16. Let (X,U) be the compact Hausdorff space constructed in
Example [3.6] let 4 : A — [0,1] be the Dieudonné measure constructed in
that example, let § : 2¥ — [0,1] be the Dirac measure at the point k € X,
and define p' := plg + g : B — [0,2]. Then LP(1') is a 2-dimensional

vector space and C,(X )/ is a 1-dimensional subspace of LP(y/) and hence
is not dense. Thus the regularity assumption on g cannot be removed in

Theorem [4.15]
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Lemma 4.17. Assume p = py is outer regqular and is inner regular on open
sets. Let pig : B — [0, 00] be the unique Radon measure such that A, = A, .
Then LP(uy) C LP(1o) and the linear map

LP(py) = LP(po) = [flun = [fluo (4.14)

1s a Banach space isometry.

Proof. Since po(B) < uy(B) for all B € B by Theorem it follows that
S5l fIPduo < [ |fPdpy for every Borel measurable function f : X — R.
Hence L£P(u1) C LP(1o). We prove that

/ ‘f‘p d/,LO = / ’f’p dul for all f S Ep(ul) (415)
X X

Thus the map is injective and has a closed image. To prove (4.15)]),
define E, := {z € X ||f(z)| > ¢} for ¢ > 0. Then u;(E.) < oo and hence
1y and pg agree on all Borel subsets of E. by Lemma [3.7 This implies
Je | fIPdpo = [ |fIP dpa, and follows by taking the limit e — 0.

We prove that the map is surjective. Denote its image by 2 . This
is a closed linear subspace of LP (), by what we have just proved. Let B € B
such that py(B) < co. By there is a sequence of compact sets K; C B
such that K; C K1 and py(K;) = po(K;) > po(B) — 27 for all i. Define
A= Uen Ki € B. Then py(A) = po(A) = limye0 pto(K;) = po(B). This
implies x4 € £P(111) and hence [xplu, = [Xaluy € 2. By Lemma [4.12] it
follows that 2" = LP(u) and this proves Lemma [£.17] O

Proof of Theorem[{.13. LetV C U be a countable basis for the topology. As-
sume without of generality that V' is compact for all V € V. (If W C U is any
countable basis for the topology then the set V := {V cEW|Vis compact}
is also a countable basis for the topology by Lemma ) Choose a bijection
N—=V:i— V;and let & := {I C N|#I < 0o} be the set of finite subsets
of N. Then the map % — Ny : I — >, ;27! is a bijection, so the set .# is
countable. For I € .# define V; := |J,.; Vi. Define the set 2 C LP(u) by

¢
2 = {s = ZO‘J'XVI]-
j=1

This set is contained in L£P(u) because V is compact for all V € 2. It
is countable and its closure 2" := 2 in LP(u) is a closed linear subspace.

EENandosz@,]jefforjzl,...,f}.
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By Lemma it suffices to prove that [xp|, € Z for every B € B with
p(B) < oo. To see this, fix a Borel set B € B with u(B) < co and a constant
e > 0. Since X is second countable every open subset of X is o-compact
(Lemma . Hence p is regular by Theorem m Hence there exists a
compact set K C X and an open set U C X such that

KcBcU, p(U\ K) < &P

Define Z := {i € N|V; C U}. Since V is a basis of the topology, we have
K Cc U = J,e7 Vi Since K is compact there is a finite set 1 C 7 such that

K C V[ c U.
Since xp — xv; vanishes on X \ (U \ K) and |x5 — xv;| < 1 it follows that
Ixs = xvill, < U\ K)V? <e.

Since xy, € £ and the number £ > 0 was chosen arbitrary, it follows that
[xBl, € 2 = 2. This proves Theorem m O

Proof of Theorem [{.15. By Corollary and Lemma [4.17]it suffices to con-
sider the case where p is outer regular and is inner regular on open sets.
Define

S = {[f]u € LP(n)|Ve>03s€S(X) such that [[f — s, < 6},
C = {[f]# € LP(u)[Ve>03 g€ C(X) such that [|f —gll, < 5}.

We must prove that LP(u) = . = €. Since . and € are closed linear
subspaces of LP(u) it suffices to prove that [x |, € - NE for every Borel set
B € B with u(B) < oo by Lemma [4.12] Let B € B with u(B) < oo and let
e > 0. By Lemma [3.7] there is a compact set K C X and an open set U C X
such that K € B C U and u(U \ K) < €P. By Urysohn’s Lemma there
is a function f € C.(X) such that 0 < f < 1, f|lx = 1, and supp(f) C U.
This implies 0 < f — xx < xinx and 0 < xp — Xk < xuv\k- Hence

IxB — xxll, < HXU\KH,, = U\ K)'" <e
and likewise || f — xk||, < &. By Minkowski’s inequality (4.4)) this implies

Ixe = fll, < lIxz = xxll, + lIxx = fll, < 2e.
This shows that [xp], € .# N€. This proves Theorem [4.15] O
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Remark 4.18. The reader may wonder whether Theorem continues to
hold for all Borel measures p : B — [0, oo] that are inner regular on open sets.
To answer this question one can try to proceed as follows. Let ug, 1 be the
Borel measures on X in Theorem that satisfy A,, = A,, = A,. Then
o is a Radon measure, p; is outer regular and is inner regular on open sets,
and fo(B) < pu(B) < puy(B) for all B € B. Thus L£P(p1) C LP(p) C LP (o)
and one can consider the maps

LP(p1) = LP(n) — LP (o).

Their composition is a Banach space isometry by Lemma .17 The question
is now whether or not the first map LP(uy) — LP(u) is surjective or, equiv-
alently, whether the second map LP(u) — LP(up) is injective. If this holds
then the subspace C.(X)/~ is dense in LP(1), otherwise it is not. The proof
of Lemma shows that the answer is affirmative if and only if every Borel
set B C X with po(B) < u(B) satisfies u(B) = oo. Thus the quest for a
counterexample can be rephrased as follows.

Question. Does there exist a locally compact Hausdorff space (X,U) and
Borel measures jig, pu1, po : B — [0,00] on its Borel o-algebra B C 2% such
that all three measures are inner regular on open sets, py s outer regular,
po s given by [B.5), po(B) < u(B) < wi(B) for all Borel sets B € B, and
0= uo(B) < u(B) < u1(B) = oo for some Borel set B € B?

This leads to deep problems in set theory. A probability measure on a mea-
surable space (X, .A) is a measure u : A — [0, 1] such that u(X) = 1. A mea-
sure 4 : A — [0, 00] is called nonatomic if countable sets have measure zero.
Now consider the measure on X = R? in Exercise with po(R x {0}) =0
and p; (R x {0}) = oo, and define ¢ : R — R? by «(x) := (x,0). If there is
a nonatomic probability measure p : 2% — [0, 1] then the measure jg + t.
provides a positive answer to the above question, and thus Theorem
would not extend to all Borel measures that are inner regular on open sets.
The question of the existence of a nonatomic probability measure is related
to the continuum hypothesis. The generalized continuum hypothesis
asserts that, if X is any infinite set, then each subset of 2% whose cardinality
is strictly larger than that of X admits a bijection to 2X. It is independent
of the other axioms of set theory and implies that nonatomic probability
measures g : 2% — [0, 1] do not exist on any set X. This is closely related
to the theory of measure-free cardinals. (See Fremlin [4, Section 4.3.7].)
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4.4 Hilbert Spaces

This section introduces some elementary Hilbert space theory. It serves two
purposes. First, it shows that the Hilbert space L*(u) is isomorphic to its
own dual space. Second, this result in turn will be used in the proof of the
Radon—Nikodym Theorem for o-finite measure spaces in the next chapter.

Definition 4.19. Let H be a real vector space. A bilinear map
HxH—R:(z,y) — (x,y) (4.16)

is called an inner product if it is symmetric, i.e. (x,y) = (y,x) for all
x,y € H and positive definite, i.e. (x,z) > 0 for all x € H \ {0}. The
norm associated to an inner product (4.16)) is the function

H—-=R:zxw|z] =/ (z,2). (4.17)

Lemma 4.20. Let H be a real vector space equipped with an inner prod-
uct (4.16) and the associated norm (4.17). The inner product and norm
satisfy the Cauchy—Schwarz inequality

(= y)| < [zl ]yl (4.18)

and the triangle inequality
2+ yll < =]l + lyll (4.19)
for all z,y € H. Thus (4.17)) is a norm on H.

Proof. The Cauchy—Schwarz inequality is obvious when x = 0 or y = 0.
Hence assume z # 0 and y # 0 and define ¢ := ||z|| "'z and 5 := ||y| " v.
Then ||&]| = ||n]| = 1. Hence

This implies [(£, )| < 1 and hence |(z,y)| < ||z|| |ly||. In turn it follows from
the Cauchy—Schwarz inequality that

e+ ylI* = llz]” + 2(z, y) + [lyll”
<l + 2zl 1yl + Iyl
= (lzll + llylD*-
This proves the triangle inequality and Lemma m ]
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Definition 4.21. An inner product space (H, (-,-)) is called a Hilbert space
if the norm (4.17)) is complete, i.e. every Cauchy sequence in H converges.

Example 4.22. Let (X, A, ) be a measure space. Then H := L*(u) is a
Hilbert space. The inner product is induced by the bilinear map

L) x L2 () = R (f,g) = (f,9) = /ngdu. (4.20)

It is well defined because the product of two L?-functions f,g: X — R is
integrable by with p = ¢ = 2. That it is bilinear follows from Theo-
rem |1.44] and that it is symmetric is obvious. In general, it is not positive
definite. However, it descends to a symmetric bilinear form

L2(0) % L2(n) = R - ([fls lal,) > (Fog) = /X fgdp. (4.21)

by Lemma which is positive definite by Lemma [1.49] Hence (4.21) is
an inner product on L?*(u). It is called the L? inner product. The norm

associated to this inner product is

1/2
L) 5 R: [f], o [fll, = ( /7 du) NN e

This is the L?norm in (4.5) with p = 2. By Theorem , L?(u) is complete
with the norm (4.22)) and hence is a Hilbert space.

Definition 4.23. Let (V, ||-||) be a normed vector space. A linear functional
AV — R s called bounded if there exists a constant ¢ > 0 such that

|A(x)] < c|l=|| forall ze€V.

The norm of a bounded linear functional A : V — R s the smallest
such constant ¢ and will be denoted by

Alx
1A= sup AL
0£zEV | z]]

The set of bounded linear functionals on V' is denoted by V* and s called the
dual space of V.

(4.23)

Exercise 4.24. Prove that a linear functional on a normed vector space is
bounded if and only if it is continuous.

Exercise 4.25. Let (V. ||-||) be a normed vector space. Prove that the dual
space V* with the norm (4.23) is a Banach space. (See Example|1.11})
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Theorem 4.26 (Riesz). Let H be a Hilbert space and let A : H — R be a
bounded linear functional. Then there exists a unique element y € H such
that

A(z) = (y,x) forall x € H. (4.24)

This element y € H satisfies

lyll = sup = [IAl- (4.25)
0#£zeH

Thus the map H — H* : y — (y,+) is an isometry of normed vector spaces.

Theorem 4.27. Let H be a Hilbert space and let E C H be a nonempty
closed convex subset. Then there exists a unique element xq € E such that
lxo|| < [|z]| for all z € E.

Proof. See page [128 [

Theorem [£.27 implies Theorem [4.20. We prove existence. If A = 0 then
y = 0 satisfies (4.24]). Hence assume A # 0 and define

E:={xeH|Az)=1}.

Then E # () because there exists an element £ € H such that A(§) # 0
and hence z := A(§)71¢ € E. The set E is a closed because A : H — R is
continuous, and it is convex because A is linear. Hence Theorem asserts
that there exists an element zy € E such that

llzoll < ||| for all x € F.
We prove that
reH, Axz)=0 — (%o, ) = 0. (4.26)

To see this, fix an element x € H such that A(z) = 0. Then z( + tx € E for
all t € R. This implies

||a70||2 < ||zo + tx||2 = ||x0||2 + 2t (zq, ) + 1* ||x||2 for all t € R.

Thus the differentiable function ¢ — ||z 4 tz||? attains its minimum at ¢ = 0
and so its derivative vanishes at ¢ = 0. Hence

d
0= G| _ llzo+tal” = 24e0.)

and this proves (4.26)).
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Now define
Zo

Y= 5
o]l

Fix an element # € H and define A := A(z). Then A(z—Azg) = A(z)—\ = 0.

Hence it follows from (4.26) that

0 = (o, — Axg) = (w0, ) — ||z ||

This implies
<$07 37>
[l o[

(y,x) = — A= A),

Thus y satisfies (4.24)).
We prove (4.25)). Assume y € H satisfies (4.24)). If y = 0 then A = 0 and
so |ly]l =0 = ||A||. Hence assume y # 0. Then

2
Y Ay A(x

2 A @l
lyll Myl ~ orwen 2]

Conversely, it follows from the Cauchy—Schwarz inequality that

[A(@)] = [{y, )| <yl

for all z € H and hence ||A|| < ||y||. This proves (4.25)).
We prove uniqueness. Assume y, z € H satisfy

(y, ) = (z,2) = Az)
for all x € H. Then (y — z,x) = 0 for all x € H. Take x := y — z to obtain
ly —=2l* ={y—2y—2)=0
and hence y —z = 0. This proves Theorem 4.26| assuming Theorem O]
Proof of Theorem[{.27. Define
6 :=inf {||z|| |z € E}.
We prove uniqueness. Let zg, z; € E such that
[ zol| = [z = 0.
Then £(zo + x1) € E because E is convex and so |lzo + z1]| > 2. Thus
lzo — 11" = 2 ||zol|” + 2 [l21]|* = [lzo + 21 [|* = 46% — ||z + 21 * <0

and therefore xq = x1.
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We prove existence. Choose a sequence x; € E such that
lim ||z;]| = 0.
71— 00

We prove that x; is a Cauchy sequence. Fix a constant € > 0. Then there
exists an integer ig € N such that

€

T

Let 7,7 € N such that ¢ > ¢y and 7 > iy. Then %(% + ;) € E because E is
convex and hence ||z; + x;|| > 26. This implies

ieN, i>ig — ]| < 6% +

2 2 2 2
|zi — 2517 = 2[Ja|]” + 2 [|as]|” — [lzs + 24
< 4(5%%) 48 =,

Thus x; is a Cauchy sequence. Since H is complete the limit zy := lim; o z;
exists. Moreover xy € E because E is closed and ||x¢|| = 0 because the Norm
function (4.17)) is continuous. This proves Theorem m O

Corollary 4.28. Let (X, A, p) be a measure space and let A : L*(1) — R be
a bounded linear functional. Then there exists a function g € L2(p), unique
up to equality almost everywhere, such that

MU = [ Fadu forall £ € L)

Moreover ||A]] = ||g|l,. Thus L*(w)* is isomorphic to L*(p).
Proof. This follows immediately from Theorem and Example [1.22 O

4.5 The Dual Space of L?(u)

We wish to extend Corollary to the LP-spaces in Definition [4.3| and
equation (4.8) (for 1 < p < oo) and in Definition (for p = 00). When
1 < p < oo it turns out that the dual space of LP(u) is always isomorphic
to L(u) where 1/p 4+ 1/q = 1. For p = oo the natural homomorphism
L*(p) — L*(u)* is an isometric embedding, however, in most cases the dual
space of L°°(u) is much larger than L'(u). For p = 1 the situation is more
subtle. The natural homomorphism L>(u) — L'(1)* need not be injective or
surjective. However, it is bijective for a large class of measure spaces and one
can characterize those measure spaces for which it is injective, respectively
bijective. This requires the following definition.
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Definition 4.29. A measure space (X, A, ) is called o-finite if there ezists
a sequence of measurable subsets X; € A such that

X = UXZ" X; C Xy, u(X;) < oo for all i € N. (4.27)
i=1

It is called semi-finite if every measurable set A € A satisfies

dF € A such that E C A

and 0 < p(E) < oo. (4.28)

u(A) >0 =

It is called localizable if it is semi-finite and, for every collection of measur-
able sets £ C A, there is a set H € A satisfying the following two conditions.

(L1) w/(E\H)=0 forall E € &.

(L2) If G € A satisfies f/(E\ G) =0 for all E € £ then u(H \ G) = 0.

A measurable set H satisfying (L1) and (L2) is called an envelope of £.
The geometric intuition behind the definition of localizable is as follows.

The collection £ C A will typically be uncountable so one cannot expect its

union to be measurable. The envelope H is a measurable set that replaces

the union of the sets in £. It covers each set E € £ up to a set of measure

zero and, if any other measurable set GG covers each set E € £ up to a set of

measure zero, it also covers H up to a set of measure zero. The next lemma

clarifies the notion of semi-finiteness.

Lemma 4.30. Let (X, A, 1) be a measure space.

(i) (X, A, pn) is semi-finite if and only if

p(A) =sup{u(E)|Ec A ECA, p(E) < oo} (4.29)
for every measurable set A € A.
(ii) If (X, A, ) is o-finite then it is semi-finite.
Proof. We prove (i). Assume (X, A, 1) is semi-finite, let A € A, and define
a:=sup{u(E)|E €A ECA, u(E) < oo}.

Then a < p(A) and we must prove that a = p(A). This is obvious when
a = 0o. Hence assume a < co. Choose a sequence of measurable sets E; C A
such that u(E;) < oo and u(E;) > a — 27 for all i. Define

i=1 i=1
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Then B; € A, E; C B; C A, and u(B;) < oco. Hence u(E;) < u(B;) < a for
all 7 € N and hence
w(B) = lim p(B;) = a < 0.
71— 00
If u(A\ B) > 0 then, since (X, A, n) is semi-finite, there exists a measurable
set F' € A such that ¥ C A\ B and 0 < u(F) < oo, and hence

BUF C A, a<p(BUF)=puB)+ uF) < oo,

contradicting the definition of a. This shows that u(A\ B) = 0 and hence
u(A) = u(B) + u(A\ B) = a, as claimed. Thus we have proved that every
semi-finite measure space satisfies . The converse is obvious and this
proves part (i).

We prove (ii). Assume that (X, A, i) is o-finite and choose a sequence of
measurable sets X; € A that satisfies . If A € A then it follows from
Theorem that p(A) = lim; 0 (AN X;). Since u(AN X;) < oo for all
¢ this shows that every measurable set A satisfies and so (X, A, u) is
semi-finite. This proves Lemma [4.30] ]

It is also true that every o-finite measure space is localizable. This can be
derived as a consequence of Theorem (see Corollary 5.9/ below). A more
direct proof is outlined in Exercise [4.58|

Example 4.31. Define (X, A, u) by
Xo={ab), A=2  u({a) =1 u({B})=co

This measure space is not semi-finite. Thus the linear map L>(u) — L' (u)*
in Theorem below is not injective. In fact, L>°(u) has dimension two
and L'(p) has dimension one.

Example 4.32. Let X be an uncountable set, let A C 2% be the o-algebra of
all subsets A C X such that A or A°is countable, and let u : A — [0, 00] be
the counting measure. Then (X, A, 1) is semi-finite, but it is not localizable.
For example, let H C X be an uncountable set with an uncountable com-
plement and let £ be the collection of all finite subsets of H. Then the only
possible envelope of £ would be the set H itself, which is not measurable.
Thus Theorem below shows that the map L>(u) — L'(u)* is injective
and Theorem below shows that it is not surjective. An example of a
bounded linear functional A : L'(u) — R that cannot be represented by an
Lee-function is given by A(f) :== >, f(x) for f e LY (u) = L*(p).
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The next theorem is the first step towards understanding the dual space
of LP(u) and is a fairly easy consequence of the Holder inequality. It asserts
that for 1/p 4+ 1/q = 1 every element of L?(u) determines a bounded lin-
ear functional on LP(u) and that the resulting map L9(u) — LP(u)* is an
isometric embedding (for p = 1 under the semi-finite hypothesis). The key
question is then whether every bounded linear functional on LP(y) is of that
form. That this is indeed the case for 1 < p < oo (and for p = 1 under the
localizable hypothesis) is the content of Theorem below. This is a much
deeper theorem whose proof for p # 2 requires the Radon—Nikodym theorem
and will be carried out in Chapter

Theorem 4.33. Let (X, A, ) be a measure space and fix constants

1 1
1 <p<oo, 1 <q<oo, -+ -=1 (4.30)
p q
Then the following holds.
(i) Let g € L%(u). Then the formula
AA) = [ fgdn for e L) (431
X
defines a bounded linear functional A, : LP(pn) — R and
|/ fgdul
[Agll = sup o <llgll, - (4.32)

secro. s, 20 (11l
(ii) The map g — A, in (4.31)) descends to a bounded linear operator

L) = LP(1)* : [glu = Ay (4.33)

(iii) Assume 1 <p < oo Then [|[Ag|l = lgll, for all g € LY (p).

(iv) Assume p = 1. Then the map L>(u) — L'(n)* in ([4.33)) is injective if
and only if it is an isometric embedding if and only if (X, A, p) is semi-finite.

Proof. See page [134] n

The heart of the proof is the next lemma. It is slightly stronger than
what is required to prove Theorem [4.33| in that the hypothesis on g to be
g-integrable is dropped in part (iii) and replaced by the assumption that
the measure space is semi-finite. In this form Lemma is needed in the
proof of Theorem and will also be useful for proving the inequalities of
Minkowski and Calderén—Zygmund in Theorems and below.
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Lemma 4.34. Let (X, A, 1) be a measure space and let p,q be as in (4.30)).
Let g : X — [0,00] be a measurable function and suppose that there ezists a
constant ¢ > 0 such that

ferrw, fx0 = /ngdu <clfl,. (4.3)

Then the following holds.

G) Fa=1 then |gll, <.

(ii) If 1 < g < oo and ||g]|, < oo then [|g]|, < c.

(iii) If 1 < g < oo and (X, A, u) is semi-finite then |g||, < c.
(iv) If ¢ = o0 and (X, A, 1) is semi-finite then ||g||, < c.

Proof. We prove (i). If g =1 take f =1 in to obtain ||g||, < c.

We prove (ii). Assume 1 < ¢ < oo and ||g||, < oo. Then it follows from
Lemma [1.47] that the set A := {z € X | g(z) = oo} has measure zero. Define
the function h : X — [0,00) by h(z) := g(z) for x € X \ A and by h(z) :=0
for z € A. Then h is measurable and

18I, = llgl, < oo, / hdp = / fodu < clfll,
X X

for all f € £P(u) with f > 0 by Lemma [.48] Define f : X — [0,00) by
f(z) := h(x)7! for » € X. Then fP = h?@1) = h? = fh and hence

1-1/q
11l = ( / hqdu) =z [ gnde= bl
X X

Thus f € LP(u) and so [[h||} = [ fhdu < c||fll, = cHhHg_l. Since
|7l < oo it follows that ||g||, = [[h]|, < ¢ and this proves part (ii).

We prove (iii). Assume (X, A, p) is semi-finite and 1 < ¢ < 0o. Suppose,
by contradiction, that ||g||, > c. We will prove that there exists a measurable
function h : X — [0, 00) such that

0<h<ug, ¢ < ||a]|, < oo. (4.35)

By (4.34) this function h satisfies [, fhdu < [ fgdp < c||f||p for all
f € LP(u) with f > 0. Since [|A[|, < oo it follows from part (i) that [[A[|, < c,
which contradicts the inequality ||A[[, > ¢ in (4.35).
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It remains to prove the existence of h. Since [[g|[, > c it follows from
Definition that there exists a measurable step function s : X — [0, 00)
such that 0 < s < g and [y s%dp > ¢ If ||s||, < oo take h := s. If
[s]l, = oo there exists a measurable set A C X and a constant § > 0 such
that p(A) = oo and oy < s < g. Since (X, A, p1) is semi-finite, Lemma [4.30]
asserts that there exists a measurable set £ € A such that £ C A and
¢ < 0%u(F) < oo. Then the function h := dxg : X — [0,00) satisfies
0<h<gand |h|,= Su(E)1 > ¢ as required. This proves part (iii).

We prove (iv). Let ¢ = oo and assume (X, A, i) is semi-finite. Suppose,
by contradiction, that ||g|| . > ¢. Then there exists a constant 6 > 0 such that
the set A :={x € X |g(x) > ¢+ 0} has positive measure. Since (X, A4, u) is
semi-finite there exists a measurable set £ C A such that 0 < pu(F) < oo.
Hence f := xu € L(y) and [ fgdp > (c+ O)u(E) > cu(E) = c||f]];, in
contradiction to (4.34). This proves (iv) and Lemma [4.34] O

Proof of Theorem |4.35. The proof has four steps.
Step 1. Let f € L7(n), g € L9 (). Then fg € LY () and || fgll, < | f]l, llgll,-

If 1 <p<oothen [(|fgldu <|fl,llgll, by the Holder inequality @3). 1t
p=1then |fg| <|f||lgll, almost everywhere by Lemma[4.8] so fg € £L!()
and || fgll; <1 fll; 9]l If p = oo interchange the pairs (f,p) and (g, q).
Step 2. We prove (i) and (ii).

By Step 1 the right hand side of is well defined and by Lemma it

depends only on the equivalence class of f under equality almost everywhere.
Hence A, is well defined. It is linear by Theorem and [|A4l] < |lgll, by
Step 1. This proves (i). The bounded linear functional A, : LP(u) — R
depends only on the equivalence class of g, again by Lemma [1.48] Hence

the map (4.33) is well defined. By Theorem and (4.32) it is a bounded

linear operator of norm less than or equal to one. This proves (ii).

Step 3. If1 < p < oo then || Ay|| = [|gll, for all g € L(pn). This continues
to hold for p =1 when (X, A, ) is semi-finite.

Let g € L9(p). For t € R define sign(t) € {—1,0, 1} by sign(¢) := 1 for ¢ > 0,
sign(t) := —1 for t < 0, and by sign(0) = 0. If f € £P(u) is nonnegative then
the function fsign(g) : X — R is p-integrable and

/Xf\g\ dp = Ay (fsign(g)) < [[Aqll || fsign(g)ll, < A IF1], -

Hence ||g||, < [|A4]| by Lemma and so [[Ag| = [|gl|, by Step 2.
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Step 4. If the map L™ (n) — L'(p)* is injective then (X, A, 11) is semi-finite.

Let A € A such that u(A) > 0 and define g := y4. Then A, : L*(u) — R is
nonzero by assumption. Hence there is an f € £(u) such that

o< = [ tadn= [ fan (4.36)

For i € N define E; := {z € A| f(z) > 27'}. Then E; € A, E; C A, and
n(E) <2 [ fdu<2 ) <o
E;

Moreover E = |Jo, E; = {z € A| f(z) > 0} is not a null set by (4.30].
Hence one of the sets E; has positive measure. Thus (X, A, p1) is semi-finite.
This proves Step 4 and Theorem [4.33] O

The next theorem asserts that, for 1 < p < oo, every bounded linear
functional on LP(u) has the form for some g € L%(u). For p # 2
this is a much deeper result than Corollary [4.28 The proof requires the
Radon-Nikodym Theorem and will be deferred to the next chapter.

Theorem 4.35 (The Dual Space of L?). Let (X, A, 1) be a measure space
and fix constants

1
1 <p<oo, 1 <qg< oo, -+-=1
b q
Then the following holds.

(i) Assume 1 < p < oo. Then the map L (p) — LP(p)* : [g], — A,y defined
by (4.31)) is bijective and hence is a Banach space isometry.

(ii) Assume p = 1. Then the map L>®(n) — L*(p)* : [g], — A, defined
by (4.31) is bijective if and only if (X, A, ) is localizable.

Proof. See page [165 ]

This next example shows that, in general, Theorem does not extend
to the case p = oo (regardless of whether or not the measure space (X, A, i)
is o-finite). By Theorem the Banach space L'(u) is equipped with an
isometric inclusion L'(p) — L*°(u)*, however, the dual space of L™(u) is
typically much larger than L'(p).



136 CHAPTER 4. L* SPACES

Example 4.36. Let u : 2% — [0, 0o] be the counting measure on the positive
integers. Then (> := L*(u) = L£>(n) is the Banach space of bounded
sequences = (x,)nen of real numbers equipped with the supremum norm
|Z]|oo := SUpP,en|®n|. An interesting closed subspace of £ is

¢ :={x = (x,)nen € €| x is a Cauchy sequence} .
It is equipped with a bounded linear functional Ag : ¢ — R, defined by
Ao(z) := lim z,  for = (z,)nen € .
n—oo

The Hahn—Banach Theorem, one of the fundamental principles of Func-
tional Analysis, asserts that every bounded linear functional on a linear sub-
space of a Banach space extends to a bounded linear functional on the entire
Banach space (whose norm is no larger than the norm of the original bounded
linear functional on the subspace). In the case at hand this means that there
is a bounded linear functional A : ¢ — R such that A|, = Ay. This lin-
ear functional cannot have the form for any g € £L*(n). To see this,
note that ¢! := L'(u) = L£'(u) is the space of summable sequences of real
numbers. Let y = (yn)neny € ¢! be a sequence of real numbers such that
Y o 1 |yn| < 0o and define the linear functional A, : £ — R by

Ay(x) = Z TnYn  for o= (z,)nen € L.
n=1

Choose N € N such that > 7 |y, =: @ < 1 and define & = (2, )nen € ¢ by
z, =0 forn < N and z,, := 1 for n > N. Then Ay (z) < a < 1 = A(x)
and hence A, # A. This shows that A does not belong to the image of the
isometric inclusion £ < (£>)*.

Exercise 4.37. Let Ay : ¢ — R be the functional in Example 4.36| and
denote its kernel by ¢y := ker Ay. Thus ¢y is the set of all sequences of real
numbers that converge to zero, i.e.

Co = {l’ = (xn>n€N €

lim z, = O} )

n—oo

Prove that ¢ is a closed linear subspace of /> and that ¢! is naturally iso-
morphic to the dual space of ¢q. Thus

61 o~ (CO)*; co g_ foo o~ (ﬁl)* o~ (CO)**a gl g (goo)* o~ (ﬁl)**

In the language of Functional Analysis this means that the Banach spaces ¢
and ¢! are not reflezive, and neither is £>°.
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We close this section with two results that will be needed in the proof
of Theorem [4.35] The first asserts that every bounded linear functional on
LP(p) can be written as the difference of two positive bounded linear function-
als (Theorem [£.39). The second asserts that every positive bounded linear
functional on LP(y) is supported on a o-finite subset of X (Theorem [4.40).
When A : LP(p) — R is a bounded linear functional it will be convenient to
abuse notation and write A(f) := A([f],) for f € LP(p).

Definition 4.38. Let (X, A, 1) be a measure space and let 1 < p < co. A
bounded linear functional A : LP(u) — R is called positive if

f=0 = A(f) =0
for all f € LP(u).

Theorem 4.39. Let (X, A, 1) be a measure space, let 1 < p < oo, and let
A LP(p) — R be a bounded linear functional. Define \* : A — [0, 00| by

M5 (A) :==sup {A(£xp)|E€ A, EC A, u(E) < oo} (4.37)

Then the maps A= are measures, LP(u) C LAT)NLYAT), and the formulas

AE(f) = /de)\i for f e LP(p) (4.38)

define positive bounded linear functionals A* : LP(u) — R such that
A=A"—A" max{|[AT AT} < [[A]. (4.39)

Proof. The proof has four steps.

Step 1. The maps \* : A — [0,00] in (4.37) are measures.

It follows directly from the definition that A\*(()) = 0. We must prove that
At is o-additive. That A\~ is then also o-additive follows by reversing the
sign of A. Thus let A; € A be a sequence of pairwise disjoint measurable sets
and define A :=|J;2, 4;. Let E € A such that E C A and p(E) < oo. Then
it follows from the definition of A™ that

Alxmna,) < M(4;)  forall ieN. (4.40)

Moreover the sequence of measurable functions f,, := xg — Y,y X#na; > 0
converges pointwise to zero and satisfies 0 < f? < yp for all n. Since
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p(E) < oo the function xg is integrable and so it follows from the Lebesgue
Dominated Convergence Theorem m that lim,, o f < fhdp =0, ie.

XE — Z XENA;
i=1

Hence it follows from (4.40) that

Alxe) = Jim Z A(XEna,) = Z A(XEna,) < Z AT (A
=1 =1 =1

Take the supremum over all £ € A with F C A and pu(FE) < oo to obtain

TA) <Y A4
=1

To prove the converse inequality, assume first that A\™(A;) = oo for some i;
since A; C A this implies AT(A4) = oo = > 77 AT(A;). Hence it suffices to
assume AT (A;) < oo for all i. Fix a constant £ > 0 and choose a sequence of
measurable sets E; € A such that E; C A; and A(xg,) > AT(A4;) — 27 for
all 4. Since F; U---U E, C A it follows from the definition of A™ that

lim '
n—oo

p

X*(4) > Alveo-o,) ZA xs) > 3 AH(A

Take the limit n — oo to obtain AT(A) > > "7 AT(A;) —e for all € > 0, so

=1

as claimed. Thus AT is g-additive and this proves Step 1.

Step 2. Let ¢ := ||A||. Then every measurable function f: X — R satisfies

/ Xt / ldx < el (4.41)

In particular, £P(u) C LY(AT) N LYAT).

Assume first that f = s : X — [0,00) is a measurable step function in
LP(p). Then there exist real numbers o; > 0 and measurable sets A4; € A
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for i = 1,...,¢ such that A, N A; = 0 for i # j, pu(A;) < oo for all 4, and
s = Zle a;x4,- Now fix a real number € > 0 and choose ¢; > 0 such that

14

9
E ;e = 5
i=1

Fori=1,...,¢ choose Ei € A such that
Ef C A Axp+) = AT (A) — &, —Alxg-) 2 A (A) — &

Then

/sd)\++/sd)\_ =
X X

M-

i (AT(A) + A (A)

=1

M-

Q; (A(XEj) - A(XE;) + 251)

1

7

= A (i&i (XEj _XE¢>> +ée
i=1
¢

Z @ (XE;r - XE;)

=1

Vi 1/p
= ¢ (Z of (B N\ E) +u<E;\E:>)> t+e

=1

IN

c +¢€

p

Y 1/p
< ¢ (Z afu(Ai)) +¢e
i=1

= csll, +e

Take the limit ¢ — 0 to obtain (4.41)) for f = s. To prove (4.41)) in gen-
eral it suffices to assume that f € LP(u) is nonnegative. By Theorem

there is a sequence of measurable step functions 0 < s; < s < --- that
converges pointwise to f. Then (f — s,)P converges pointwise to zero and is
bounded above by f? € £'(u). Hence lim,, o || f — snll, = 0 by the Lebesgue
Dominated Convergence Theorem and lim,,_, f X Sn A\t = f i d\* by
the Lebesgue Monotone Convergence Theorem m This proves . It
follows from that £P(u) C LY(AT) N LY(A7) and this proves Step 2.
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Step 3. If Ae A and u(A) < oo then
ME(A) <00, Alxa) = AT(A) — A (A) (4.42)

It follows from the inequality (4.41]) in Step 2 that
VA4 = [aan+ [ <elall, = @) < .
X X

Now let £ > 0 and choose E € A such that E C A and A(xg) > A\T(A) —e.
Since —A(xa\r) < A7 (A) this implies

A(xa) = Alxe) + Aluas) > X (4) = A7(4) <.

Since this holds for all € > 0 we obtain A(x4) > AT(A) — A7(A). Reversing
the sign of A we also obtain —A(xa) > A~ (A) —AT(A) and this proves Step 3.

Let s : X — R be a p-integrable step function. Then there are real numbers
a; and measurable sets A; € A for i =1,...,¢ such that u(A4;) < oo for all ¢
and s = Zle a;x4,- Hence it follows from Step 3 that

Zal X4,) :gal (AZ-)):/Xsd)\*—/Xsd)\.

This proves for p-integrable step functions. Now let f € £P(u) and
assume f > 0. By Theorem there is a sequence of measurable step
functions 0 < s; < s9 < --- that converges pointwise to f. Then (f — s,)?
converges pointwise to zero and is bounded above by fP € L'(u). Hence
lim, o0 || f = snll, = 0 by the Lebesgue Dominated Convergence Theorem
and hence lim, o A(s,) = A(f). Moreover, [, fd\* < c|fll, < oo by
Step 2 and limy, o [ Sp dAF = [, fdX* by the Lebesgue Monotone Con-
vergence Theorem. Thus every nonnegative LP-function f : X — [0,00)
satisfies ([(1.43). If f € £P(p) then f* € LP(u) satisty by what we have
just proved and hence so does f = f* — f~. This proves Step 4.

It follows from Steps 2 and 4 that the linear functionals A* : LP(u) — R

n (4.38]) are bounded and satisfy (4.39)). This proves Theorem m ]
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Theorem 4.40. Let (X, A, 1) be a measure space, let 1 < p < oo, and let
A LP() — R be a positive bounded linear functional. Define

AMA) :==sup{A(xg) | E€ A ECA, u(E) < oo} (4.44)
for A€ A. Then the map X : A — [0,00] is a measure, LP(u) C LY(N), and
:/ fdA for all f e LP(u). (4.45)

X

Moreover, there are measurable sets N € A and X,, € A forn € N such that

X\N=JX,, AMN)=0, puX,)<oo, X,CX, (446)

n=1
for all n € N.

Proof. That X is a measure satisfying £7(u) C £'(\) and (4.45]) follows from
Theorem and the fact that AT = X\ and A~ = 0 because A is positive.
Now define ¢ := ||A||. We prove in three steps that there exist measurable

sets N € A and X,, € A for n € N satisfying (4.46]).

Step 1. For every € > 0 there exists a measurable set A € A and a measur-
able function f: X — [0,00) such that

floa=0,  imff>0,  fl,=1  A(f)>ec—e  (447)

In particular, u(A) < (infa f)™? < oo.

Choose h € LP(u) such that [|h|, = 1 and A(h) > ¢ —e. Assume without
loss of generality that h > 0. (Otherwise replace h by |h|.) Define

Ai={z e X |h(z)>2""}.

Then (h — hxa,)P converges pointwise to zero as i — oo and is bounded by
the integrable function h”. Hence it follows from the Lebesgue Dominated
Convergence Theorem » = 0 and therefore

lim A(hxa,) = A(h) > c—e.
1—00

Choose i € N such that A(hxa,) > ¢ — € and define
h’XAi

A= A;, f::|

Then A and [ satisfy (4.47) and so u(A) < 1an f P [ fPdp = (infs )P
This proves Step 1.
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Step 2. Let e, A, f be as in Step 1 and let E € A. Then

ENA= @ A(XE) 1/q c
- +1 4.4
1(E) < oo — e <\t (4.48)
where 1 < g < oo is chosen such that 1/p+1/q = 1.
Define
1/p
g:=f+ ( o ) XE-
p(E)
Then
1/p
ol = ([ #du+e) = e
X
and, by (4.47),
1/p
€ A(xE)
Alg) = A ——) A — 1/p .

Since A(g) < c||gl|, it follows that

A
c—¢ +€1/”ﬁ <c(l+e).

Since (1 +¢)"/? — 1 < ¢/p for all € > 0 this implies

o oees (1)

Since e'~1/P = ¢1/4 this proves Step 2.
Step 3. There exist measurable sets N, X1, Xo, X3, ... satisfying (4.46)).
Choose A, € A and f, € LP(u) as in Step 1 with ¢ = 1/n. For n € N define

X, =AU---UA,, N::X\GAn:X\GXn.
n=1 n=1

By Step 2 every measurable set £ C N with u(E) < oo satisfies
Alxr) L [c
peye =i (p

for all n € N and hence A(xg) = 0. This implies A(N) = 0 by (4.44).
Moreover pu(X,) < Y, pu(A;) < oo for every n by Step 1. This proves
Step 3 and Theorem [4.40] n
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4.6 Exercises

Many of the exercises in this section are taken from Rudin [I7, pages 71-75].

Exercise 4.41. Let (X, A, 1) be a measure space and let

f=,.. . fa): X >R"

be a measurable function such that [, |fi|du < oo for i = 1,...,n. Define

/deu:: (/Xﬁdu,...,/andu)ER".

Let R" — [0,00) : v + ||v|| be any norm on R™. Prove that the function
X — [0,00) : x — ||f(x)|| is integrable and

H / fduH < [ 151 dn. (4.49)
X X

Hint: Prove the inequality first for vector valued integrable step functions
s : X — R™ Show that for all € > 0 there is a vector valued integrable step
function s : X — R™ such that || [\ (f —s)du|| < e and [, || f —s||du <e.

Exercise 4.42. Let (X, A, ) be a measure space such that u(X) = 1. Let
f € LY(p) and let ¢ : R — R be convex. Prove Jensen’s inequality

¢( /X fdu> < /X (6o f)dp (4.50)

(In particular, show that ¢~ o f is necessarily integrable so the right hand
side is well defined, even if ¢ o f is not integrable.) Deduce that

exp ( / fdu) < [ exwlr)dn (451)

Deduce also the inequality

n

i=1 =1

=1

for all positive real numbers A; and a;. In particular, ab < a? /p+ b?/q for all
positive real numbers a, b, p, ¢ such that 1/p+1/q = 1.
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Exercise 4.43. Let (X, A, 1) be a measure space, choose p,q,7 € [1,00]

such that
1 1 1

?

p q T
and let f € LP(p) and g € L9(p). Prove that fg € £7(n) and

1Fgll. < A1, llall, (4.53)

Exercise 4.44. Let (X, A, 1) be a measure space, choose real numbers

1<r<p<s<oo,

and let 0 < A < 1 such that
A 1—-X 1

r s D

Prove that every measurable function f : X — R satisfies the inequality

1L, < WA A1 (4.54)
Deduce that L7 (p) N L% () C LP(p).

Exercise 4.45. Let (X, A, 1) be a measure space and let f: X — R be a
measurable function. Define

Ir={peR|l1<p<oo, feLll(u}.

Prove that I; is an interval. Assume f does not vanish almost everywhere
and define the function ¢; : (1,00) — R by

o¢(p) == plogl| fl, for p > 1.

Prove that ¢ is continuous and that the restriction of ¢ to the interior of /¢
is convex. Find examples where I; is closed, where I is open, and where /¢
is a single point. If I; # () prove that

lim [ £]l, = [/l -
pP—00

Exercise 4.46. For each of the following three conditions find an example
of measure space (X, A, u) that satisfies it for all p,q € [1, o00].

(a) If p < ¢ then LP(n) C LI(p).
(b) If p < g then L(p) C LP(u).
(c) If p # ¢ then LP(p) ¢ L9(p) and L) & LP(p).
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Exercise 4.47. Let (X,U) be a locally compact Hausdorff space and define

f is continuous and
Co(X):=<X f: X —=>R| Ve>03K C X such that
K is compact and supy k| f| <€

Prove that X is a Banach space with respect to the sup-norm. Prove that
C.(X) is dense in Cp(X).

Exercise 4.48. Let (X, A, ) be a measure space such that u(X) = 1 and
let f,g: X — [0,00] be measurable functions such that fg > 1. Prove that

171l Mgl = 1.

Exercise 4.49. Let (X, A, 1) be a measure space such that u(X) = 1 and
let f: X — [0, 00] be a measurable function. Prove that

I+ I7E < /X VIT Pdu<1+fl,. (4.55)

Find a geometric interpretation of this inequality when p is the restriction
of the Lebesgue measure to the unit interval X = [0,1] and f = F’ is the
derivative of a continuously differentiable function F' : [0,1] — R. Under
which conditions does equality hold in either of the two inequalities in ?

Exercise 4.50. Let (X, A, 1) be a measure space and let f : X — R be
a measurable function such that f > 0 and fX fdu=1. Let E C X bea
measurable set such that 0 < u(E) < co. Prove that

[ 1ostr)du < ey 10s () (4.56)
and
/ fPdp < p(E)'? for0 < p<1. (4.57)

Exercise 4.51. Let f :[0,1] — (0,00) be Lebesgue measurable. Prove that

/0 £(s) ds / log(f(t)) dt < / f@)log(f@)de.  (458)
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Exercise 4.52. Fix two constants 1 < p < oo and a > 0.

(i) Let f : (0,00) — R be Lebesgue measurable and suppose that the function
(0,00) = R : & — 2?7179 f(z) [P is integrable. Show that the restriction of f
to each interval (0, x] is integrable and prove Hardy’s inequality

([ | s dﬂf) péf( [Tosepa)” . as

Show that equality holds in if and only if f = 0 almost everywhere.
Hint: Assume first that f is nonnegative with compact support and de-
fine F(x) := % fo t)dt for x > 0. Use integration by parts to obtain
JoS ar™ 1 “F( )pdx— Zfo P17 F ()P~ f(x) dz. Use Holder’s inequality.
(ii) Show that the constant p/a in Hardy’s inequality is sharp. Hint: Choose
A< 1—a/pand take f(x) ;=27 for x <1 and f(x) :=0 for z > 1.

(iii) Prove that every sequence (a,)nen of positive real numbers satisfies

oo 1 N p p p
> (v 2n) (%) 2 (160
N=1 n=1 n=1

Hint: If a, is nonincreasing then (4.60)) follows from (4.59) with a =p — 1
for a suitable function f. Deduce the general case from the special case.
(iv) Let f : (0,00) — R be Lebesgue measurable and suppose that the
function (0,00) — R : x + P77 f(z)P is integrable. Show that the
restriction of f to each interval [z, 00) is integrable and prove the inequality

(/Ooo 2! /:O f(t)dt ’ dq:) " < g </OOO xp1+“|f(a:)\pdq:> l/p_ (4.61)

Hint: Apply the inequality (4.59) to the function g(z) := 272 f(z™1).

Exercise 4.53. Let (X,U) be a locally compact Hausdorff space and let
p: B — [0, 00| be an outer regular Borel measure on X that is inner regular
on open sets. Let g € £!(u1). Prove that the following are equivalent.

(i) The function g vanishes p-almost everywhere.

(ii) [y fgdu =0 for all f e Co(X).

Hint: Assume (ii). Let K C X be compact. Use Urysohn’s Lemma
to show that there is a sequence f,, € C.(X) such that 0 < f, < 1 and f,
converges almost everywhere to xr. Deduce that [ x 9dp = 0. Then prove
that [, gdu = 0 for every open set U C X and [, gdu =0 for all B € B.
Warning: The regularity hypotheses on p cannot be removed. Find an
example of a Borel measure where (ii) does not imply (i). (See Example4.16})
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Exercise 4.54. Prove Egoroff’s Theorem: Let (X, A, u) be a measure
space such that u(X) < oo and let f, : X — R be a sequence of measurable
functions that converges pointwise to f : X — R. Fix a constant € > 0.
Then there exists a measurable set E € A such that (X \ E) < € and f,|g
converges uniformly to f|g. Hint: Define

S(k,n) ={x e X||fi(z) — fj(x)| <1/kVij>n} fork,neN.

Prove that
lim p(S(k,n)) = u(X) for all £ € N.

n— oo
Deduce that there is a sequence ny, € N such that £ := [,y S(k, n;) satisfies
the required conditions. Show that Egoroff’s theorem does not extend to o-
finite measure spaces.

Exercise 4.55. Let (X, A, ) be a measure space and let 1 < p < co. Let
f € LP(u) and let f,, € LP(u) be a sequence such that lim, o || fall, = [ f]],
and f, converges to f almost everywhere. Prove that lim, e [|f — fal, = 0.
Prove that the hypothesis lim,, o || full, = || f]|, cannot be removed.

Hint 1: Fix a constant € > 0. Use Egoroff’s Theorem to construct disjoint
measurable sets A, B € A such that X = AUB, [,|f|Pdu < e, u(B) < oo,
and f, converges to f uniformly on B. Use Fatou’s Lemma to prove
that limsup,,_, [,[fal? dp < e.

Hint 2: Let g, := 2P72(|f,|P + | f|?) — | f — f.|P and use Fatou’s Lemma [1.41]
as in the proof of the Lebesgue Dominated Convergence Theorem [1.45]

Exercise 4.56. Let (X, A, u) be a measure space and let f, : X — R be
a sequence of measurable functions and let f : X — R be a measurable
function. The sequence f, is said to converge in measure to f if

Jim pu ({z € X |[fu(z) = f(2)| > e}) =0

for all € > 0. (On page 47| this is called convergence in probability.) Assume
p(X) < oo and prove the following.

(i) If f,, converges to f almost everywhere then f,, converges to f in measure.
Hint: See page {7
(ii) If f,, converges to f in measure then a subsequence of f, converges to f
almost everywhere.

(iii) If 1 < p < oo and f,, f € LP(p) satisfy lim, o0 || fn — fI[, = O then f,
converges to f in measure.
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Exercise 4.57. Let (X,U) be a compact Hausdorff space and p : B — [0, 00|
be a Borel measure. Let C'(X) = C.(X) be the space of continuous real
valued functions on X. Consider the following conditions.

(a) Every nonempty open subset of X has positive measure.

(b) There exists a Borel set £ C X and an element zy € X such that every
open neighborhood U of zq satisfies u(U N E) > 0 and pu(U \ E) > 0.

(c) p is outer regular and is inner regular on open sets.

Prove the following.

(i) Assume (a). Then the map C(X) — L*™(u) in (b) is an isometric em-
bedding and hence its image is a closed linear subspace of L>(u).

(ii) Assume (a) and (b). Then there is a nonzero bounded linear functional
A L*°(u) — R that vanishes on the image of the inclusion C'(u) — L™ ().
Hint: If f = xyg almost everywhere then f is discontinuous at z.

(iii) Assume (a), (b), (c). Then the isometric embedding L'(p) — L™(u)*
of Theorem is not surjective. Hint: Use part (ii) and Exercise [4.53]
(iv) The Lebesgue measure on [0, 1] satisfies (a), (b), and (c).

Exercise 4.58. Prove that every o-finite measure space (X, A, ) is localiz-
able. Hint: Assume first that u(X) < co. Let £ C A and define

c::sup{u(E1U-~UEn)|n€N,El,...,EnGS}.

Show that there is a sequence E; € £ such that u(|J;2, E;) = ¢. Prove that
H :=J;Z, E; is an envelope of €.

Exercise 4.59. Let (X, A, 1) be a localizable measure space. Prove that it
satisfies the following.

(F) Let F be a collection of measurable functions f: Ay — R, each defined
on a measurable set Ay € A. Suppose that any two functions fi, fo € F agree
almost everywhere on Ay N Ay,. Then there exists a measurable function
g: X — R such that gla, = f almost everywhere for all f € F.

We will see in the next chapter that condition (F) is equivalent to localizabil-
ity for semi-finite measure spaces. Hint: Let .# be a collection of measurable
functions as in (F). For a € R and f € .# define A} :={z € Ay| f(z) < a}.
For ¢ € Q let H? € A be an envelope of the collection £9 := {A‘} | f € ff}
Define the measurable sets

X“:=|JH, aeR

q€Q
g<a
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Prove the following.
(i) If a < b then X* C X°.

(ii) For every a € R the measurable set X is an envelope of the collection
&= {A‘}\feﬁ}.
Thus p(AG\ X?) =0 for all f € .7 and, if G € A, then
pAG\G) =0 VfeF = u(X*\ G) =0.
(iii) If a € R and E € A then
pASNE)=0 VfeF —= uw(X*NE)=0.

(iv) u(X*N A\ A3) =0 for all f € .7 and all a € R.

(v) Define Ey := (N,cg X") U (X \ U,cr X?) . Then Ej is measurable and
p(AfNEy) =0forall fe.Z.
(vi) For f € .# define the measurable set Ef C A; by

Ep = (AN E) U | JAS\ XU [ J(X7nAp\ AY).
qeQ q€Q
Then p(Ey) = 0.
(vii) Define g : X — R by

(l’) 0, ifJTEEo,
TE "= a, ifze X forall s>aand z ¢ X" for all r < a.

Then g is well defined and measurable and g = f on Ay \ Ey for all f € Z.

Example 4.60. This example is closely related to Exercise [3.24] however,
it requires a considerable knowledge of Functional Analysis and the details
go much beyond the scope of the present manuscript. It introduces the
Stone—Cech compactification X of the natural numbers. This is a com-
pact Hausdorff space containing N and satisfying the universality property
that every continuous map from N to another compact Hausdorff space Y
extends uniquely to a continuous map from X to Y. The space C'(X) of
continuous functions on X can be naturally identified with the space ¢*.
Hence the space of positive bounded linear functionals on ¢*° is isomorphic
to the space of Radon measures on X by Theorem [3.15] Thus the Stone-
Cech compactification of N can be used to understand the dual space of £>°.
Moreover, it gives rise to an interesting example of a Radon measure which
is not outer regular (explained to me by Theo Buehler).

(4.62)
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Consider the inclusion N — (¢*°)* : n — A,, which assigns to each nat-
ural number n € N the bounded linear functional A, : /> — R defined by
A (&) =&, for € = (&)ien € £°°. This functional has norm one. Now the
space of all bounded linear functionals on ¢*° of norm at most one, i.e. the
unit ball in (£°°)*, is compact with respect to the weak-x topology by the
Banach—-Alaoglu theorem. Define X to be the closure of the set {A,, |n € N}
in (£>)* with respect to the weak-* topology. Thus

For all finite sequences c',...,c € R
and €1 = ()iexs- - ., €' = (D)ien € £
X = ¢ A e ()] satisfying A(§?) < for j=1,...,¢
there exists an n € N such that
g<dforj=1,...¢

The weak-* topology U C 2% is the smallest topology such that the map
fer X =R, fe(A) = A(),

is continuous for each £ € ¢*. The topological space (X,U) is a separable
compact Hausdorff space, called the Stone—Cech compactification of N.
It is not second countable and one can show that the complement of a point
in X that is not equal to one of the A,, is not o-compact. The only continuous
functions on X are those of the form fe, so the map (> — C(X) : £ — fe is
a Banach space isometry. (Verify that || f¢|| := suppcx|fe(A)] = ||€]], for all
¢ € £.) Thus the dual space of £*° can be understood in terms of the Borel
measures on X.

By Theorem [3.18] every Radon measure on X is regular. However, the
Borel g-algebra B C 2% does carry o-finite measures p : B — [0, oo] that are
inner regular but not outer regular (and must necessarily satisfy p(X) = 00).
Here is an example pointed out to me by Theo Buehler. Define

uB) =3 -

neN
An€B

for every Borel set B C X. This measure is o-finite and inner regular but
is not outer regular. (The set U := {A,,|n € N} is open, its complement
K := X'\ U is compact and has measure zero, and every open set containing
K misses only a finite subset of U and hence has infinite measure.) Now let
Xo C X be the union of all open sets in X with finite measure. Then X,
is not o-compact and the restriction of p to the Borel g-algebra of X is a
Radon measure but is not outer regular.



Chapter 5

The Radon—Nikodym Theorem

Recall from Theorem that every measurable function f : X — [0, 00)
on a measure space (X, A, 1) determines a measure py : A — [0, 00| defined
by ps(A) :== [, fdu for A € A. By Theorem it satisfies pp(A) =0
whenever p(A) = 0. A measure with this property is called absolutely con-
tinuous with respect to . The Radon-Nikodym Theorem asserts that, when
i is o-finite, every o-finite measure that is absolutely continuous with re-
spect to p has the form gy for some measurable function f : X — [0,00). It
was proved by Johann Radon in 1913 for the Lebesgue measure space and
extended by Otton Nikodym in 1930 to general o-finite measure spaces. A
proof is given in Section 5.1} Consequences of the Radon—Nikodym Theorem
include the proof of Theorem about the dual space of LP(u) (Section
and the decomposition theorems of Lebesgue, Hahn, and Jordan for signed
measures (Section [5.3). An extension of the Radon-Nikodym Theorem to
general measure spaces is proved in Section 5.4}

5.1 Absolutely Continuous Measures

Definition 5.1. Let (X, A, 1) be a measure space. A measure A : A — [0, 00|
15 called absolutely continuous with respect to u if

u(A) =0 = AA) =0

for all A € A. It is called singular with respect to pu if there ezists a
measurable set A such that A(A) = 0 and pu(A°) = 0. In this case we also say
that A and p are mutually singular. We write “\ < p” iff A is absolutely
continuous with respect to p and “N L p” iff X and p are mutually singular.

151
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Lemma 5.2. Let (X, .A) be a measurable space and let pi, A\, A1, Ao be measures
on A. Then the following holds.

(1) If M L pwand Ay Ly then Ay + Ay L p.

(ii) If M < pand A < p then Ay + Ay < .

(iii) If My < p and Ny L p then Ay L Xo.

(iv) f A< pand X L p then A = 0.

Proof. We prove (i). Suppose that Ay L p and Ay L p. Then there exist
measurable sets A; € A such that \;(4;) = 0 and u(A§) = 0 for i = 1,2.
Define A := A; N Ay. Then A° = A{ U A is a null set for p and A is a null
set for both A\; and Ay and hence also for \; + Ay. Thus A\; + Ao L p and this
proves (i).

We prove (ii). Suppose that \; < p and Ay < p. If A € A satisfies
p(A) =0 then A\(A) = Aa(A) = 0 and so (A + A2)(A) = M (A)+ X2(A) = 0.
Thus A\; + A2 < p and this proves (ii).

We prove (iii). Suppose that A\; < p and Ay L p. Since Ay L p there
exists a measurable set A € A such that \y(A) = 0 and pu(A¢) = 0. Since
A1 < p it follows that A\ (A°) = 0 and hence A\; L \y. This proves (iii).

We prove (iv). Suppose that A < g and A L p. Since A L u there exists
a measurable set A € A such that A\(A) = 0 and u(A°) = 0. Since A < p it
follows that A(A°) = 0 and hence A\(X) = A(A) +A(A°) = 0. This proves (iv)
and Lemma [5.2] O

Theorem 5.3 (Lebesgue Decomposition Theorem). Let (X, A, i) be a
o-finite measure space and let \ be a o-finite measure on A. Then there exist
unique measures Ag, As : A — [0, 00| such that

A=A+ A, Ao < [, As L. (5.1)
Proof. See page [157] O

Theorem 5.4 (Radon—Nikodym). Let (X, A, u) be a o-finite measure
space and let X : A — [0,00] be a measure. The following are equivalent.

(i) A is o-finite and absolutely continuous with respect to fu.

(ii) There exists a measurable function f: X — [0,00) such that

AA) = /A fdu  forallAe A (5.2)

If (i) holds then equation (5.2)) determines f uniquely up to equality p-almost
everywhere. Moreover, f € LY (i) if and only if \(X) < oo.
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Proof. The last assertion follows by taking A = X in .

We prove that (ii) implies (i). Thus assume that there exists a measurable
function f: X — [0, 00) such that X is given by (5.2). Then X is absolutely
continuous with respect to p by Theorem[I.35 Since p is o-finite, there exists
a sequence of measurable sets X; C Xy C X3 C --- such that u(X,) < oo
and X =J>7, X,,. Define A, := {z € X,,| f(z) <n}. Then A, C A,+; and
AMA,) < nu(X,) < oo for all n and X = |J,—, A,. Thus X is o-finite and
this shows that (ii) implies (i).

It remains to prove that (i) implies (ii) and that f is uniquely determined
by up to equality p-almost everywhere. This is proved in three steps.
The first step is uniqueness, the second step is existence under the assumption
AX) < oo and p(X) < oo, and the last step establishes existence in general.

Step 1. Let (X, A, u) be a measure space, let A : A — [0,00] be a o-finite
measure, and let f,g: X — [0,00) be two measurable functions such that

AA) = /Afd,u = /Agdu for all A € A. (5.3)

Then f and g agree p-almost everywhere.

Since (X, A, \) is a o-finite measure space there exists a sequence of mea-
surable sets A; C Ay C Az C --- such that A(A4,) < oo for all n € N and
X =, A,. For n € N define

A, ={FE e A|ECA,}, o, i= ] 4, -
Take A = A, in (5.3)) to obtain f,g € L*(u,) for all n. Thus
f—g¢€ L), /(f—g)dun:O for all £ € A,.
E

Hence f — g vanishes p,-almost everywhere by Lemma [1.49] Thus the set

Eyn={z € Ay | f(x) # g(x)}
satisfies p(E,) = pn(E,) = 0 and hence the set

Bi={r € X| /() # g0} = |J B

satisfies u(E) = 0. This proves Step 1.
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Step 2. Let (X,A) be a measurable space and let \,pu = A — [0,00] be
measures such that A(X) < oo, u(X) < oo, and A < p. Then there exists a
measurable function h : X — [0,00) such that N(A) = [, hdu for all A € A.

By assumption A 4+ g : A — [0, 00] is a finite measure defined by
A+ pu)(A) = AA) +pu(4)  for Ac A
Since (A + p)(X) < oo it follows from the Cauchy-Schwarz inequality that
H:=L*(A+p) C L'(A + p).
Namely, if f € L2(A + u) then

JNULCSE \//\deAJru) ¢ = VAX) + (%),

:/deA.

for f € L*(\ + p). (Here we abuse notation and use the same letter f for a
function in £2(\ + p) and its equivalence class in L*(A + u).) Then

< /X fldr< /X 1O+ 1) < el fllapen

for all f € L*(A+p). Thus A is a bounded linear functional on L*(A+ ) and
it follows from Corollary that there exists an L2-function g € L2(\ + )

such that
| rin=[ rgaoem (5.4)
X X

for all f € £2(\+ ). This implies
/fl— dA+p) = /fd)\—i—u /fgd/\—l—,u)
:/fd()\+u)—/fd)\ (5.5)
X X

Z/deu

Define A : L*(A + p) — R by

for all f € L2(\+ ).
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We claim that the inequalities 0 < g < 1 hold (A + p)-almost everywhere.
To see this, consider the measurable sets

Ey:={z € X |g(z) <0}, Ey:={ze€X|g(x) >1}.
Then it follows from (5.4)) with f := xg, that

OSA(Eo)Z/XEodkz/XEogd(A+u)§0-
X X

Hence [, xp,9 d(A+p) = 0 and it follows from Lemma that the function
f = —Xg,9 vanishes (A + p)-almost everywhere. Hence (A + p)(Ep) = 0.
Likewise, it follows from ([5.5) with f := xp, that

u(&)z/xmdu:/E<1—g>d<A+u>so.

Hence p(E;) = 0. Since A is absolutely continuous with respect to p it follows
that A(F1) = 0 and hence (A4 u)(E;) = 0 as claimed. Assume from now on
that 0 < g(z) < 1 for all x € X. (Namely, redefine g(x) := 0 for x € EyU E}

without changing the identities ((5.4]) and (5.5)).)
Apply equation (5.5) to the characteristic function f := ya € L2(\ + p)

of a measurable set A to obtain the identity

u(A) = /A(l —g)dA+ p) for all A € A.

By Theorem this implies that equation ([5.5) continues to hold for every
measurable function f : X — [0, 00), whether or not it belongs to £2(\ + ).
Now define the measurable function i : X — [0,00) by

h(z) := _9lo) for z € X.
1—g(x)
By equation (5.4) with f = x4 and equation (5.5) with f = yah it satisfies

AA) = /XxAdA:/XxAgd@w)

= /XXAh(l—g)d()\+M):/XXAth

:/hd,u
A

for all A € A. This proves Step 2.
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Step 3. We prove that (i) implies (ii).

Since A and p are o-finite measures, there exist sequences of measurable sets
An, B, € A such that A, C A1, M(A,) < 00, B, C By, u(B,) < oo for
allnand X =J~ | A, = U,—, By. Define X,, := A, N B,,. Then

X, C Xoa1, AMX,) < o0, u(X,) < oo
for all n and X = J,~, X,,. Thus it follows from Step 2 that there exists a
sequence of measurable functions f, : X,, — [0, c0) such that

AMA) = / fndu for all n € N and all A € A such that A C X,,. (5.6)
A

It follows from Step 1 that the restriction of f,1; to X, agrees with f,
p-almost everywhere. Thus, modifying f,.; on a set of measure zero if
necessary, we may assume without loss of generality that f,i1|x, = f. for
all n € N. With this understood, define f : X — [0,00) by

flx, == fn for n € N.

This function is measurable because

FH0, ) = a0, d) = | £ (0. c) € A

for all ¢ > 0. Now let F € A and define E,, := EN X, € A for n € N. Then
E\CE,CEsC---, E=|]JE.
n=1

Hence it follows from part (iv) of Theorem that
AME) = lim AE,)

n—oo

= lim fdu

n—oo En

n—oo

= jQXEfdﬂ
::néfdw

Here the last but one equation follows from the Lebesgue Monotone Conver-
gence Theorem [1.37] This proves Step 3 and Theorem [5.4] O

= lim [ xg,fdp
X
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Example 5.5. Let X be a one element set and let A := 2%. Define the
measure 4 : 25 — [0, 00] by p(0) ;=0 and p(X) := oo.

(i) Choose A(0) := 0 and A(X) := 1. Then A < p but there does not exist a
(measurable) function f : X — [0,00] such that [, fdu = A(X). Thus the
hypothesis that (X, A, ) is o-finite cannot be removed in Theorem

(ii) Choose A := p. Then A(A) = [, fdu for every nonzero function
f:X —1]0,00). Thus the hypothesis that (X, .A,\) is o-finite cannot be
removed in Step 1 in the proof of Theorem

Example 5.6. Let X be an uncountable set and denote by A C 2% the
set of all subsets A C X such that either A or A¢ is countable. Choose
an uncountable subset H C X with an uncountable complement and define
A, v: A= [0,00] by

0, if A is countable,

MA) = { 1, if A¢is countable, wA) =#ANH), v(4):=#A

Then A\ < p < v and p and v are not o-finite. There does not exist any
measurable function f : X — [0, 0] such that A\(X) = [, fdu. Nor is there
any measurable function h : X — R such that u(A) = [, hdv for all A € A.
(The only possible such function would be h := xp which is not measurable.)

Proof of Theorem[5.5. We prove uniqueness. Let Aq, As, X, A, 0 A — [0, 0]

be measures such that e
A=Xa+ A=A+ )\, Ao < L1, A, <, As Lo, AL .
Then there exist measurable sets A, A" € A such that
As(A) =0,  p(X\A) =0, NA)=0, pX\A)=0.

Since X \ (ANA") = (X \A) U(X\A), this implies u(X \ (AN A")) = 0.
Let E € A. Then \( ENANA)=0=N,(ENANA’) and hence

MENANA)=XNENANA)=N(ENANA).

Moreover u(E\ (ANA")) =0, hence \(E\ (ANA"))=0=N(F\(ANA))
and hence

A(EN(ANA)) = ME\ (AN AY)) = X(E\ (AN A)).
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This implies
M(E)=X(ENANAY=N(ENANA) =) (F)
As(B) = A(EN (ANA)) = N (E\ (AN A)) = N (E).

This proves uniqueness.
We prove existence. The measure

vi=A+u:A— 0,00

is o-finite. Hence it follows from the Radon-Nikodym Theorem [5.4] that there
exist measurable functions f, g : X — [0, 00) such that

AME) = /Efdl/, u(E) = /Egdy for all £ € A. (5.7)
Define
A= {z e X|g(z) >0} (5.8)
and
A(E) = AENA), As(E) = AMENAY for £ € A. (5.9)
Then it follows directly from that the maps A\,, As : A — [0, 00] are
measures and satisfy A\, + A, = A. Moreover, it follows from that
As(A) = ANANA)=A0)=0
and from that g|ac = 0, so by
p(AC) = / gdv = 0.

This shows that A\; L p. It remains to prove that A\, is absolutely continuous
with respect to p. To see this, let £ € A such that p(E) = 0. Then by ({5.7))

/XEng:/ng:,U(E):O.
X E

Hence it follows from Lemma that xgg vanishes v-almost everywhere.
Thus xgnag = XaXxrg vanishes v-almost everywhere. Since g(z) > 0 for all
x € EN A, this implies

v(ENA)=0.
Hence

N(E) = MEN A) = / fdv=0.
EnA
This shows that A\, < p and completes the proof of Theorem O
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5.2 The Dual Space of (i) Revisited

This section is devoted to the proof of Theorem 4.35. Assume throughout
that (X, A, p) is a measure space and fix two constants

1
1<p< oo, 1 <q<oo, -+ -=1. (5.10)
b q

As in Section 4.5 we abuse notation and write A(f) := A([f],) for the value
of a bounded linear functional A : LP(u) — R on the equivalence class
of a function f € LP(u). Recall from Theorem that every g € L(u)
determines a bounded linear functional A, : LP(x) — R via

Vi [ dade for g e 20

The next result proves Theorem [4.35|in o-finite case.

Theorem 5.7. Assume (X, A, pn) is o-finite and let A : LP(u) — R be a
bounded linear functional. Then there ezists a function g € L) such that
A, = A
Proof. Assume first that A is positive. We prove in six steps that there exists

a function g € £(p) such that g > 0 and A, = A.
Step 1. Define
AA) :==sup{A(xg)|E € A, EC A, u(E) < oo} (5.11)
for A€ A. Then the map X : A — [0,00] is a measure, LP(u) C LY(N), and
) =[x fdX forall f € LP(u).
This follows directly from Theorem [4.40}

Step 2. Let A be as in Step 1 and define ¢ := ||A||. Then A\(A) < cu(A)'/P
for all A € A.

By assumption A(f) < c|f||, for all f € LP(u). Take f := xg to obtain
Axg) < cu(BE)YP < c,u(A)l/p for all £ € A with £ C A and u(FE) < oo.
Take the supremum over all such E to obtain A(A) < cu(A)Y? by (5.1]] (G-11).

Step 3. Let X\ be as in Step 1. Then there exists a measurable function
g: X —[0,00) such that \(A) = [, gdu for all A € A.

By Step 2, A is o-finite and A < p. Hence Step 3 follows from the Radon-
Nikodym Theorem [5.4] for o-finite measure spaces.
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Step 4. Let X be as in Step 1 and g be as in Step 3. Then [ fgdp = [y fdX
for every measurable function f: X — [0,00).

This follows immediatey from Step 3 and Theorem [1.40}
Step 5. Let ¢ be as in Step 2 and g be as in Step 3. Then ||g||, < c.
Let A be as in Step 1 and let f € £P(u) such that f > 0. Then

/ foduz® / FANTZAGS) < el £, (5.12)
X X

Moreover, the measure space (X, A, ) is semi-finite by Lemma m Hence
it follows from parts (iii) and (iv) of Lemma that ||g]|, < c.

Step 6. Let g be as in Step 3. Then A = A,.

Since g € L%(u) by Step 5, the function g determines a bounded linear
functional Ay : LP (1) — R via Ay(f) == [y fgdu for f € L£P(n). By
it satisfies A,(f) = A(f) for all f € L£P(u) with f > 0. Apply this identity
to the functions f* : X — [0,00) for all f € LP(u) to obtain A = A,.
This proves the assertion of Theorem for every positive bounded linear
functional A : LP(u) — R.

Let A : LP() — R be any bounded linear functional. By Theorem [£.39)
there exist positive bounded linear functionals A* : LP(u) — R such that
A = AT — A~. Hence, by what we have just proved, there exist functions
g* € L9(u) such that g* > 0 and A* = A +. Define g := g* — g~. Then
g € L9(p) and Ay = Ag+ — Ay~ = AT — A~ = A. This proves Theorem[p.7 O

The next result proves Theorem [4.35]in the case p = 1.

Theorem 5.8. Assume p = 1. Then the following are equivalent.

(i) The measure space (X, A, ) is localizable.

(ii) The measure space (X, A, ) is semi-finite and satisfies condition (F) in
FExercise i.e. if F is a collection of measurable functions f : Ay — R,
each defined on a measurable set Ay € A, such that any two functions
f1, fo € F agree almost everywhere on Ay, N Ay,, then there exists a measur-
able function g : X — R such that g|a, = f almost everywhere for all f € .F.

(iii) The linear map
L(p) = LY (p)* 1 g = A, (5.13)

15 bijective.
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Proof. The proof that (i) implies (ii) is outlined in Exercise m

We prove that (ii) implies (iii). Since (X, .A, u) is semi-finite, the linear
map is injective by Theorem . We must prove that it is surjective.
Assume first that A : L'(u) — R is a positive bounded linear functional.

Define £ := {E cA ‘ u(E) < oo} and, for E € £, define
Ap:={Ae A|AC E}, LE = A (5.14)
Then there is an extension operator vp : L' (ug) — £'(u) defined by

s = { 1 R g (5.15

It descends to a bounded linear operator from L'(ug) to L'(p) which will
still be denoted by tg. Define

AE :AOLE : Ll(uE) — R.

This is a positive bounded linear functional for every E € £. Hence it follows
from Theorem (and the Axiom of Choice) that there is a collection of
bounded measurable functions gz : E — [0,00), F € &, such that

Ap(f) = / fopdpg  forall B € & and all f € L' (ug).
E

If E)F € £ then ENF € &£ and the functions gg|gnr, 9r|enr, and genr
all represent the same bounded linear functional Agnp : L'(upnr) — R.
Hence they agree almost everywhere by Theorem [£.33] This shows that the
collection

F = { JE | E e 5}

satisfies the hypotheses of condition (F) on page[l48] Thus it follows from (ii)
that there exists a measurable function g : X — R such that, for all F € &,
the restriction g|p agrees with g almost everywhere on F.

We prove that ¢ > 0 almost everywhere. Suppose otherwise that the
set A~ :={z € X |g(z) < 0} has positive measure. Since (X, A, u) is semi-
finite there exists a set £ € £ such that E C A~ and u(E) > 0. Since
g(x) < 0 < gg(x) for all x € F it follows that ¢g|r does not agree with gg
almost everywhere, a contradiction. This contradiction shows that g > 0
almost everywhere.



162 CHAPTER 5. THE RADON-NIKODYM THEOREM

We prove that g < [|A]| almost everywhere. Suppose otherwise that the
set AT := {z € X|g(x) > ||A||} has positive measure. Since (X, A, u) is
semi-finite there exists a set £ € € such that £ C A" and p(E) > 0. Since
98]l = [[Asll < IA]l it follows from Lemma [4.8 that gg(z) < [|A]] < g(x)
for almost every x € E. Hence g|g does not agree with gg almost everywhere,
a contradiction. This contradiction shows that g < ||Al| almost everywhere
and we may assume without loss of generality that

0 < g(x) <Al

for all z € X.

We prove that A, = A. Fix a function f € £'(u) such that f > 0. Then
there exists a sequence F; € & such that By C Ey C E3 C --- and xg, f
converges pointwise to f. Namely, by Theorem there exists a sequence
of measurable step functions s; : X — [0,00) such that 0 < s; < 89 < ---
and s; converges pointwise to f. Since fx s;pdp < fx fdp < oo for all ¢ the
sets B; := {x € X |s;(z) > 0} have finite measure and 0 < s; < xg, f < f for
all 7. Thus the E; are as required. Since the sequence |f — xg, f| converges
pointwise to zero and is bounded above by the integrable function f it follows
from the Lebesgue Dominated Convergence Theorem that

lim [|f — xp. fll, = 0.
i—00

Hence

= lim [ fgg dp= lim / fgdp = / fgdp.
1—00 E’L 1— 00 Ez X

Here the last step follows from the Lebesgue Monotone Convergence Theo-
rem (1.37, This shows that A(f) = Ay(f) for every nonnegative integrable
function f: X — [0, 00). It follows that

A = AUT) = A7) = Ag(F7) = Mg () = Ag(f)

for all f € £'(u). Thus A = A, as claimed.

This shows that every positive bounded linear functional on L!(u) be-
longs to the image of the map . Since every bounded linear functional
on L'(p) is the difference of two positive bounded linear functionals by The-
orem m, it follows that the map is surjective. Thus we have proved
that (ii) implies (iii).
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We prove that (iii) implies (i). Assume that the map (5.13) is bijective.
Then (X, A, pt) is semi-finite by part (iv) of Theorem [£.33] Now let £ C A
be any collection of measurable sets. Assume without loss of generality that

El,...,Egeg - E1U"‘UE568.

(Otherwise, replace £ by the collection £ of all finite unions of elements
of £; then every measurable envelope of £’ is also an envelope of £.) For
E € &€ define Ag and ug by and define the bounded linear functional
Ag: L'(ug) — R by

Ao(f) = [ fdue  for £ € L) (5.16)
E
Then for all E,F € A and f € L' (p)
Define A : L'(u) — R by
A(f) == sup Ap(f*]e) —sup Ap(f~|p). (5.18)
FeE Beg

We prove that this is a well defined bounded linear functional with ||A]| < 1.
To see this, note that Ag(f|g) < [y fdu for every nonnegative function

£ e L) and s0 NI < [y f7dic+ Jy £ di = |l for all £ € £3().
Moreover, it follows directly from the definition that A(cf) = cA(f) for
all c >0 and A(—f) = —A(f). Now let f,g € £'(u) be nonnegative inte-
grable functions. Then

Af+g) = supAp(fle+9lr)
E€E

< supAgp(flg) + sup Agp(g|e)
E€& Eeg

= A(f) +Alg)-
To prove the converse inequality, let € > 0 and choose F, F' € £ such that
Ag(fle) > M) —&, Ar(glr) > A(g) —&.
Then EU F € £ and it follows from that
Apor((f +9)leur) = Apur(fleur) + Apur(9leur)

> Ap(fle) + Ar(glr)
> A(f) + Alg) — 2.
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Hence A(f 4+ g) > A(f) + A(g) — 2¢ for all € > 0 and so

ACF) +Mg) < A(f +9) < Af) + Alg).

This shows that A(f+g) = A(f)+A(g) for all f, g € L}(n) such that f,g > 0.
If f,g € LY(u) then (f+g)"+f +9g =(f+9)~ + f"+g" and hence

A +9) ")+ A+ Mg ) =M +9)7) + AT +Algh)

by what we have just proved. Since A(f) = A(f") — A(f™) by definition it
follows that A(f + g) = A(f) + A(g) for all f,g € L£'(u). This shows that
A: L' — R is a positive bounded linear functional of norm [|A|| < 1.

With this understood, it follows from (iii) that there exists a function

g € L£°(p) such that A = A,. Define
H:={x e X|g(x)>0}.

We prove that H is an envelope of £. Fix a set £ € £ and suppose, by
contradiction, that u(E£ \ H) > 0. Then, since (X, A, ) is semi-finite, there
exists a measurable set A € A such that 0 < pu(A) < coand A C E\ H.
Since g(z) < 0 for all = € A it follows that

0 < u(A) = Ap(xale) = / gdu <0,
A

a contradiction. This contradiction shows that our assumption u(E \ H) > 0
must have been wrong. Hence u(E \ H) =0 for all E € £ as claimed.

Now let G € A be any measurable set such that u(E \ G) = 0 for all
E € £. We must prove that u(H \ G) = 0. Suppose, by contradiction, that
p(H \ G) > 0. Since (X, A, p) is semi-finite there exists a measurable set
A € A such that 0 < u(A) < oo and A C H\ G. Then

/ gdp = AN(xa) =supAg(xalg) =supu(ENA)=0.
A Ee€ BeE

Here the second equation follows from , the third follows from ,
and the last follows from the fact that ENA C £\ G for all £ € €. Since
g > 0 on A it follows from Lemma that u(A) = 0, a contradiction. This
contradiction shows that our assumption that u(H \ G) > 0 must have been
wrong and so u(H \ G) = 0 as claimed. Thus we have proved that every

collection of measurable sets £ C A has a measurable envelope, and this
completes the proof of Theorem [5.8| O
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Now we are in a position to prove Theorem in general.

Proof of Theorem[{.35 For p =1 the assertion of Theorem [4.35] follows from
the equivalence of (i) and (iii) in Theorem 5.8 Hence assume p > 1. We
must prove that the linear map LI(u) — LP(p)* : g — A, is surjective. Let
A : LP(u) — R be a positive bounded linear functional and define

MA) :=sup{A(xg) | E€ A ECA, u(E) < oo} for A € A.
Then A : A — [0, 00] is a measure by Theorem and

LP(n) C LY(N), A(f) = /de)\ for all f € LP(u).

Theorem [4.40] also asserts that there exists a measurable set N € A such
that A\(N) = 0 and the restriction of p to X \ N is o-finite. Define

Xo:=X\N, Ag:={Aec A|AC Xo}, fo = 1] 4,

as in (5.14)), let ¢ : LP(uo) — LP(1) be the extension operator as in ([5.15)),
and define Ag := Aoy : LP(ug9) — R. Then Ay is a positive bounded linear
functional on L”(ug) and

A = [ pan= [ gar=nu(le) forall £ e 2
X X\N

Since (Xo, Ao, jto) is o-finite it follows from Theorem that there exists a
function go € L£(po) such that gy > 0 and

Ao(fo) = Jogo dpo for all fo € L£P (o).

Xo
Define g : X — [0,00) by g(z) := go(x) for z € Xy = X \ N and g(z) := 0
for z € N. Then [|g[| 1o(,y = 190/l La(ue) = [[Aoll = [[A]| by Theorem (4.33} and
A(f) = Mo(flx,) = on fooduo = [ fgdp for all f € LP(u). This proves
the assertion for positive bounded linear functionals. Since every bounded

linear functional A : LP(u) — R is the difference of two positive bounded
linear functionals by Theorem [4.39] this proves Theorem [4.35] O

Corollary 5.9. Every o-finite measure space is localizable.

Proof. Let (X, A, u) be a o-finite measure space. Then (X, A, u) is semi-
finite by Lemma m Hence the map L>®(u) — L'(u)* : g — A, in is
injective by Theorem and is surjective by Theorem [5.7] Hence it follows
from Theorem [5.8| that (X, A, i) is localizable. O
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5.3 Signed Measures

Throughout this section (X,.4) is a measurable space, i.e. X is a set and
A C 2% is a o-algebra. The following definition extends the notion of a
measure on (X, A) to a signed measure which can have positive and negative
values. As an example from physics one can think of electrical charge.

Definition 5.10. A function X : A — R is called a signed measure if it is
o-additive, i.e. every sequence E; € A of pairwise disjoint measurable sets

satisfies
ZM(E@-)I <oo, A (U E) = ZA(Ei). (5.19)

Lemma 5.11. Every signed measure A : A — R satisfies the following.

(i) \(@) = 0.

(ii) If By, ..., Er € A are pairwise disjoint then NU'_, Ei) = S0 M(E;).
Proof. To prove (i) take E; := ) in equation (5.19). To prove (ii) take E; := ()
for all ¢+ > /. O

Given a signed measure A : A — R it is a natural question to ask whether
it can be written as the difference of two measures A\* : A — [0, 00). Closely
related to this is the question whether there exists a measure p : A — [0, 00)
that satisfies

IA(A)] < u(A) for all A € A. (5.20)

If such a measure exists it must satisfy
E,Fe A ENF= = AME) = MNF)<u(FUF)

Thus a lower bound for u(A) is the supremum of the numbers A(E) — A(F)
over all decompositions of A into pairwise disjoint measurable sets E and F'.
The next theorem shows that this supremum defines the smallest measure

that satisfies ([5.20)).

Theorem 5.12. Let A : A — R be a signed measure and define

E . FecA,
IAM(A) :=sups ME) = X(F)| ENF =1, for A e A. (5.21)
FEuF=A

Then [MNA)] < |A(A) < oo forall A€ A and [N : A — [0,00) is a measure,
called the total variation of \.
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Proof. We prove that |A| is a measure. If follows directly from the definition
that [A|(()) = 0 and [A|(A) > [A(A)] > 0 for all A € A. We must prove that
the function |A| : A — [0,00] is o-additive. Let A; € A be a sequence of
pairwise disjoint measurable sets and define

Let FE, F € A are measurable sets such that

ENF =40, EUF = A. (5.22)
Then - .
E=JEn4), F={JFnA4).
=1 =1
Hence

AE) = \F) = i)\(EmAi) —i)\(FmAi)

- Z(A(E NA) - AFN AZ-)>

=1

< >,

Take the supremum over all pairs of measurable sets F, F' satisfying ((5.22)
to obtain

IA[(A) < ZM\(A» (5.23)

To prove the converse inequality, fix a constant € > 0. Then there are
sequences of measurable sets F;, F; € A such that
€
2
for all i € N. The sets E :=J;°, E; and F := | J;=, F; satisfy and so

AI(A) = ME) = MF) = 3 (AE) = A(FR)) > DIAI(A) — =
i=1 i=1

Hence |[A[(A) > D77 [A|(A;) — e for all e > 0. Thus [A[(A) > > 02 |A[(4)
and so [A[(A) = Y72, [A(A4;) by (5.23). This shows that |A| is a measure.
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It remains to prove that |A[(X) < oco. Suppose, by contradiction, that
IA|(X) = co. We prove the following.

Claim. Let A € A such that |\|(X\ A) = co. Then there exists a measurable
set B € A such that A C B, IN(B\ A)| > 1, and |\[(X \ B) = cc.

There exist measurable sets E, F' such that ENF =0, FEUF = X \ A, and

ME) = AMF) =2+ [MX\ A),
ME) + A(F) = M(X \ A).

Take the sum, respectively the difference, of these (in)equalities to obtain

2ME) > 24+ |MX \A)|+AMX\A4) >2,
2A(F) S AX\A4) —2— [A(X\ 4)| < -2,

and hence |[A\(E)| > 1 and [A(F)| > 1. Since |A|(E)+|A[(F) = |A[(X\A) = 00
it follows that |A[(E) = oo or |A\|(F) = co. If [A|(E) = oo choose B := AUF
and if |A[(F') = oo choose B := AU E. This proves the claim.

It follows from the claim by induction that there exists a sequence of
measurable sets () := Ay C A; C Ay C -+ such that [A(A, \ A,-1)| > 1 for
alln € N. Hence E,, := A,\ A, _1 is a sequence of pairwise disjoint measurable
sets such that " [A(E,)| = oo, in contradiction to Definition [5.10} This
contradiction shows that the assumption that |[A\|(X) = oo must have been
wrong. Hence |A\|(X) < oo and thus |[A\|(A) < oo for all A € A. This proves
Theorem (.12 O

Definition 5.13. Let A : A — R be a signed measure and let |\ : A — [0, 00)
the measure in Theorem [5.13. The Jordan decomposition of \ is the
representation of \ as the difference of two measures AT whose sum is equal
to |A|. The measures \* : A — [0,00) are defined by

ME(A) = w =sup{+ANE)|E € A, EC A} (5.24)
for A € A and they satisfy
AT =27 = )\, AT+ =)L (5.25)

Exercise 5.14. Let (X, A, 1) be a measure space, let f € £!(u), and define
AMA) == [, fdu for A e A. Prove that \ is a signed measure and

|)\\(A):/A\f]du, Ai(A)z/Afidu for all A € A. (5.26)
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Definition 5.15. Let pu: A — [0,00] be a measure and let A\, A1, Ay : A — R
be signed measures.

(i) A is called absolutely continuous with respect to p (notation “N < p”)
if W(E) =0 implies \(F) =0 for all E € A.

(iii) A is called concentrated on A € Aif \(E) = ANENA) forall E € A.

(iii) A is called singular with respect to p (notation “\ L u”) if there exists
a measurable set A such that u(A) =0 and X is concentrated on A.

(iv) A1 and Ay are called mutually singular (notation “A\y L \y”) if there
are measurable sets Ay, Ay such that Ay N Ay =0, Ay U Ay = X, and \; s
concentrated on A; fori=1,2.

Lemma 5.16. Let p be a measure on A and let X\, \1, Ao be signed measures
on A. Then the following holds.

(1) A < pif and only if |\| < p.
(ii) A L p if and only if |\ L p.
(iii) A\ L Ag if and only if |\] L |As].

Proof. The proof has four steps.
Step 1. Let A € A. Then |M(A) =0 if and only if N(E) = 0 for all
measurable sets E C A.

If [A|(A) = 0 then |A(E)| < |M(E) < [M(A) = 0 for all measurable sets
E C A. The converse implication follows directly from the definition.

Step 2. A is concentrated on A € A if and only if |\|(X \ A) = 0.

The signed measure A is concentrated on A if and only if A\(E) = AM(E'N A)
for all E € A, or equivalently \(E'\ A) = 0 for all £ € A. By Step 1 this
holds if and only if |A[(X \ A) = 0.

Step 3. We prove (i).

Assume A < p. If E € A satisfies u(E) = 0 then every measurable set
F e Awith F' C E satisfies u(F') = 0 and hence A(F") = 0; hence |[A\|(E) =0
by Step 1. Thus |\| < p. The converse follows from the fact that A < |A|.
Step 4. We prove (ii) and (iii).

A L p if and only if there is a measurable sets A € A such that p(A) = 0 and
A is concentrated on A. By Step 2 the latter holds if and only if [A[(X\A) =0
or, equivalently, |A| L . This proves (ii). Assertion (iii) follows from Step 2
by the same argument and this proves Lemma [5.16 [
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Theorem 5.17 (Lebesgue Decomposition). Let (X, A, ) be a o-finite
measure space and let X : A — R be a signed measure. Then there exists a
unique pair of signed measures Ay, \s : A — R such that

A=A + A, Ao < 1, As L p. (5.27)

Proof. We prove existence. Let A* : A — [0,00) be the measures defined
by (5.24). By Theorem there exist measures \Xf : A — [0,00) and
A A — [0,00) such that AT < pu, AT L p, and \* = AF + A\E. Hence the
signed measures \, := A\[ — A, and A, := A} — A\, satisfy (5.27).

We prove uniqueness. Assume A = A\, + Ay = X, + X, where A\, A\g, \J, AL
are signed measures on A such that A\,,\, < p and A, N, L p. Then
|Aal, N, < pand |Ag|, |AL| L p by Lemma [5.16] This implies [Aq|+ || < u

and || + |X,| L p by parts (i) and (ii) of Lemma [5.2] Moreover,
Ao = Aol <Al + 1261 NG = Aal = A = XS] <A+ [AG)-

Hence |\, — X,| < p and [\, — A,| L p by part (iii) of Lemma [5.2] Thus
|Aa — AL| = 0 by part (iv) of Lemma [5.2] and therefore A\, = A, and A = A..
This proves Theorem 5.1 ]

Theorem 5.18 (Radon—Nikodym). Let (X, A, ) be a o-finite measure
space and let A : A — R be a signed measure. Then N < p if and only if
there exists a p-integrable function f: X — R such that

AA) = /Afd,u for all A € A. (5.28)

f is determined uniquely by (5.28]) up to equality p-almost everywhere.

Proof. If X is given by for some f € L£'(p) then A < p by part (vi) of
Theorem [1.44] Conversely, assume A < g and let [A|, AT, A7 : A — [0, 00)
be the measures defined by and (5.24). Then |\ < p by part (i) of
Lemmal5.16and so A* < . Hence it follows from Theorem [5.4]that there ex-
ist p-integrable functions f* : A — [0, 00) such that A*(A) = [, f* du for all
A € A. Hence the function f := fT—f~ € L£!(p) satisfies (5.28)). The unique-
ness of f, up to equality p-almost everywhere, follows from Lemma|1.49, This
proves Theorem [5.18] O
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Theorem 5.19 (Hahn Decomposition). Let A : A — R be a signed
measure. Then there exists a measurable set P € A such that

AMANP) >0, AMA\P) <0 forall A e A. (5.29)

Moreover, there exists a measurable function h : X — {1, —1} such that
AMA) = / hd|\| for all A € A. (5.30)
A

Proof. By Theorem the function p := [\ : A — [0,00) in is a
finite measure and satisfies |A\(A)| < u(A) for all A € A. Hence A\ < p and
it follows from Theorem that there exists a function h € £'(u) such
that holds. We prove that h(z) € {1,—1} for p-almost every = € X.
To see this, fix a real number 0 < r < 1 and define

A={z e X||hx) <r}.
If £,F € Asuch that ENF =0 and EUF = A, then

NE) = MF) = [ hd— [ bz [nau [l < ua)

Take the supremum over all pairs F,F € A such that ENF = ( and
EUF = A, to obtain pu(A,) < ru(A,) and hence p(A,) = 0. Since this holds
for all r < 1 it follows that |h| > 1 u-almost everywhere. Modifying h on a

set of measure zero, if necessary, we may assume without loss of generality
that |h(z)| > 1 for all z € X. Define

P:={zeX|h(z)>1}, N:={zeX|h(z) <-1}.
Then PNN =0, PUN = X, and
u(P) < [ hdn=AP) < p(P). —p(N) SAN) = [ i < (),

Hence
/P(h— 1) dp = M(P) — pu(P) =0, /N(h—i—l)d,u: AN) + u(N) = 0.

By Lemma this implies h = 1 p-almost everywhere on P and h = —1
p-almost everywhere on N. Modify h again on a set of measure zero, if
necessary, to obtain h(x) = 1 for all x € P and h(z) = —1 for all z € N.
This proves Theorem [5.19| O]
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Theorem 5.20 (Jordan Decomposition). Let (X,.A) be a measurable
space, let A : A — R be a signed measure, and let \* : A — [0,00) be finite
measures such that A\ = \* — X\=. Then the following are equivalent.

(1) AT+ AT =)

(i) AT LA~

(iii) There exists a measurable set P € A such that \T(A) = A(AN P) and
A (A) = =A(A\ P) forall A € A.

Moreover, for every signed measure X\, there is a unique pair of measures A\t
satisfying A = \T — X\~ and these equivalent conditions.

Proof. We prove that (i) implies (ii). By Theorem there exists a mea-
surable function h : X — {£1} such that A(A) = [, hd|}| for all A € A.
Define P := {z € X |h(zx) = 1}. Then it follows from (i) that

A () = 'A‘(m;“m [ =

A (p) = RIP) = AP) /—d|)\| = 0.

Hence AT L A™.
We prove that (ii) implies (iii). By (ii) there exists a measurable set
P € A such that AT (P¢) =0 and A~ (P) = 0. Hence

AT(A) =X (ANP)=X"(ANP) =X (ANP)=XANP),
AT(A) = A (A\P) = A" (A\ P) = AT(A\ P) = —A(A\ P)
for all A € A.
We prove that (iii) implies (i). Assume (iii) and fix a set A € A. Then
AT(A)+ X (A) = XANP) = XA\ P) < |AI(A).
Now choose E, F € A such that ENF =( and EUF = A. Then
ME)=AF) = MENP)+MNE\P)=ANFnNP)—\NF\P)
< MENP)=AME\P)+ANFNP)—\NF\P)
= MANP) = XA\ P)=X\"(A)+ X (A).
Take the supremum over all such pairs F, F € A to obtain the inequality
IA[(A) < AT(A) + A7 (A) for all A € A and hence |A| = AT + A~
Thus we have proved that assertions (i), (ii), and (iii) are equivalent.

Existence and uniqueness of A* now follows from (i) with A* = 1(|A] £ ).
This proves Theorem [5.20] O
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5.4 Radon—Nikodym Generalized

This section discusses an extension of the Radon-Nikodym Theorem for
signed measures to all measure spaces. Thus we drop the hypothesis that
p is o-finite. In this case Examples and show that absolute conti-
nuity of A\ with respect to p is not sufficient for obtaining the conclusion
of the Radon—Nikodym Theorem and a stronger condition is needed. In [4]
Theorem 232B| Fremlin introduces the notion “truly continuous”, which is
equivalent to “absolutely continuous” whenever p is o-finite. In [8] Konig re-
formulates Fremlin’s criterion in terms of “inner regularity of A with respect
to p”. We shall discuss both conditions below, show that they are equiva-
lent, and prove the generalized Radon—Nikodym Theorem. As a warmup we
rephrase absolute continuity in the familiar -0 language of analysis.

Standing Assumption. Throughout this section (X, A, u) is a measure
space and X\ : A — R is a signed measure.

Lemma 5.21 (Absolute Continuity). The following are equivalent.
(1) A is absolutely continuous with respect to p.

(ii) For every € > 0 there exists a constant 6 > 0 such that
Aec A u(A) <o — IA(A)| < e.

Proof. That (ii) implies (i) is obvious. Conversely, assume (i). Then |\| < p
by Lemma/5.16] Assume by contradiction that (ii) does not hold. Then there

exists a constant € > 0 and a sequence of measurable sets A; € A such that
(A <27% IA(A)] > € for all 7 € N.
For n € N define

B,:=|J4,  B:=()B.
i=n n=1
Then
1
Bu D B, (Ba) < 5o [AI(Ba) 2 [AI(An) 2 [AM(An)] 2 €

for all n € N. Hence p(B) = 0 and |A|(B) = lim, 00| A|(B,) > € by part (v)
of Theorem This contradicts the fact that |A\| < pu. This contradiction
shows that our assumption that (ii) does not hold must have been wrong.
Thus (i) implies (ii) and this proves Lemma [5.21] O
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Definition 5.22. The signed measure X is called truly continuous with
respect to pu if, for every € > 0, there exists a constant 6 > 0 and a
measurable set E € A such that u(E) < oo and

AcA wANE)<s =  [AA)|<e (5.31)

Lemma 5.23. The following are equivalent.

(i) A is truly continuous with respect to p.

(ii) || is truly continuous with respect to p.

(iii) AT and A\~ are truly continuous with respect to p.

Proof. Assume (i), fix a constant € > 0, and choose 6 > 0 and F € A such
that u(E) < oo and holds. Let A € A such that u(AN E) < §. Then
A(B) —A(A\ B) < 2¢ for every measurable set B C A and hence |A|(A) < 2¢
by Theorem [5.12] This shows that (i) implies (ii). That (ii) implies (iii)
and (iii) implies (i) follows directly from the definitions. O

Definition is due to Fremlin [4, Chapter 23]. If the measure space
(X, A, p) is o-finite then A is truly continuous with respect to p if and only if it
is absolutely continuous with respect to p by Theorem below. However,
for general measure spaces the condition of true continuity is stronger than
absolute continuity. The reader may verify that, when (X, A, 1) and A are as
in part (i) of Example or Example [5.6] the finite measure X is absolutely
continuous with respect to p but is not truly continuous with respect to p.
Fremlin’s condition was reformulated by Konig [§] in terms of inner regularity
of A with respect to pu. This notion can be defined in several equivalent ways.
To formulate the conditions it is convenient to introduce the notation

E={FecAlu(E) < oo}.

Lemma 5.24. The following are equivalent.
(i) Forall Ae A

MANE)=0foral E€é& = A(A) = 0.
(ii) For all A€ A
IM(ANE)=0 foral E €& = |A|(A) = 0.
(iii) For all A e A
[A(A) = sup|A[(A N B) = sup|A|(E).

EcE
ECA
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Proof. By Theorem there exists a set P € A such that
MANP) >0, MA\P)<0, MN(P)=XANP)—XA\P) (5.32)

for all A € A. Such a measurable set P will be fixed throughout the proof.

We prove that (i) implies (ii). Fix a set A € A such that |A\[(ANE) = 0 for
all E € £. Then it follows from that A\(ANENP)=AANE\P)=0
for all £ € £. By (i) this implies A(AN P) = A(A\ P) = 0 and hence
IA[(A) = 0 by (5.32). This shows that (i) implies (ii).

We prove that (ii) implies (i). Fix a set A € A such that A\(ANE) =0
for all E € £ Since ENP € £ and E\ P € & for all E € £ this implies
AMANENP)=ANANE\P)=0forall Ee&. Hence it follows from
that |A\|[(AN E) =0 for all £ € £. By (ii) this implies |A|(4) = 0 and hence
A(A) = 0 because |A(A)| < |A[(A). This shows that (ii) implies (i).

We prove that (ii) implies (iii). Fix a set A € A and define

c:= SE%E|)\|(E) < |A[(A). (5.33)
ECA

Choose a sequence E; € € such that E; C A for all ¢ and lim;_,o |A\|(E;) = c.
For i € N define Fl = E1UE2UUE1 Then

Fe& FEcCE.cA  NE)SNE) <c  (5.34)

for all 7 and hence
lim|A[(F}) = c. (5.35)

1—00

Define .
B:=A\F, F:=|]JF. (5.36)
=1

Then |A|(F) = lim; | A|(F;) = ¢ by part (iv) of Theorem and hence
[AI(B) = [AI(A) = [AI(F) = [A[(A) = e (5.37)

Let E € £ such that E C B. Then ENF, =0, FUF, € £, and EUF; C A
for all ¢ by (5.36). Hence |A|(E)+|\|(Fi) = [A(EUE;) < cfor all i by (5.33).
This implies |A|(E) < lim;_o0(c — [A[(F})) = 0 by (5.35)). Hence [A[(E) =0
for all £ € £ with E C B and it follows from (ii) that |A[(B) = 0. Hence
it follows from that |[A|(A) = c¢. This shows that (ii) implies (iii).
That (iii) implies (ii) is obvious and this proves Lemma [5.24] O
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Definition 5.25. The signed measure A is called inner regular with re-
spect to p if it satisfies the equivalent conditions of Lemmal[5.2])

Theorem 5.26 (Generalized Radon—Nikodym Theorem).
Let (X, A, 1) be a measure space and let A : A — R be a signed measure.
Then the following are equivalent.

(i) A is truly continuous with respect to p.

(ii) A us absolutely continuous and inner reqular with respect to pu.
(iii) There exists a function f € L£'(u) such that (5.28)) holds.

If these equivalent conditions are satisfied then the function f in (iii) is
uniquely determined by (5.28]) up to equality p-almost everywhere.

First proof of Theorem[5.26. This proof is due to Konig [8]. It has the advan-
tage that it reduces the proof of the generalized Radon-Nikodym Theorem
to the standard Radon-Nikodym Theorem for o-finite measure spaces.

We prove that (i) implies (ii). To see that X is absolutely continuous
with respect to pu, fix a measurable set A € A such that p(A) = 0 and fix a
constant ¢ > 0. Choose § > 0 and F € A such that u(F) < oo and
holds. Then u(ANE) < pu(A) =0 < § and hence [A\(A)| < e by (5.31]). Thus
IN(A)| < € for all € > 0 and hence A(A) = 0. This shows that A < p.

We prove that A is inner regular with respect to p by verifying that A
satisfies condition (i) in Lemma[5.24] Fix a set A € A such that

EecA ukE) <o = AMANE)=0.

We must prove that A(A) = 0. Let ¢ > 0 and choose § > 0 and E € A
such that p(F) < oo and (5.31]) holds. Then p((A\ E)NE) =0 < 4, hence

IMA\ E)| < e by (5.31), and hence
AA)] = MAN E) + MANE)| = MA\ E)| <e.

This shows that |[A(A)| < e for all € > 0 and so A\(A) = 0 as claimed. Thus
we have proved that (i) implies (ii).

We prove that (ii) implies (iii). Since A is inner regular with respect to p
there exists a sequence of measurable sets F; € A such that F; C E;;; and
pu(E;) < oo for all i € N and |A[(X) = lim; | A|(E;). Define

XO = UEla AO = {A S A‘A C X0}7 Ko = /vL|.A07 )\0 = )‘|./40'

=1
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Then (Xo, Ao, tto) is a o-finite measure space and Xy : Ay — R is a signed
measure that is absolutely continuous with respect to . Hence the Radon—
Nikodym Theorem for o-finite measure spaces asserts that there exists
a function fo € £'(uo) such that

Mo(A) = / fo dpo for all A € Ay.
A

Define f : X — R by fl|x, := fo and f|x\x, :== 0. Then f € £*(11). Choose
a measurable set A € A. Then it follows from part (v) of Theorem that

[AAN Xo)| < [A[(AN Xo) < [A[(X\ Xo) = lim [A[(X\ E;) = 0.

Hence

)\(A):/\O(AQXO):/A . fodMOZ/AfdM

for all A € A. This shows that (i) implies (iii). The uniqueness of f up to
equality p-almost everywhere follows immediately from Lemma [1.49]

We prove that (iii) implies (i). Choose f € L£'(u) such that (5.28)) holds.
Define

c;:\Ay(X>:/X!f!du
and
E,:={reX|27 <|f(x)| < 2"},
By ={z€X|f(x)#0} =] En

neN

Then 27"u(E,) < |M(E,) < ¢ and hence p(E,) < 2"c < oo for all n € N.
Moreover, ¢ = [A\[(X) = M\ (Ex) = lim, oo |\|(E,). Now fix a constant £ > 0.
Choose n € N such that [M(E,) > ¢ —¢/2 and define § := 2" 1e. f Ac A
such that (AN E,) < § then

AA) = AN E) + N(ANE,)
< WX\ E,)+2'u(ANE,)

€
< =+ 2" =c¢.
2—|— €

This shows that A is truly continuous with respect to pu. This completes the
first proof of Theorem |5.26| O
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Second proof of Theorem[5.26. This proof is due to Fremlin [4, Chapter 23].

It shows directly that (i) implies (iii) and has the advantage that it only uses

the Hahn Decomposition Theorem It thus also provides an alternative

proof of Theorem [5.18| (assuming the Hahn Decomposition Theorem) which

is of interest on its own. By Lemma |5.23|it suffices to consider the case where

A: A —[0,00) is a finite measure that is truly continuous with respect to p.
Consider the set

T {f . X = [0, 50) f is measurable and } .

[, fdu < \A) forall Ac A

This set is nonempty because 0 € .#. Moreover, [, fdu < X\(X) < oo for
all f € % and

f,ge ¥ — max{ f, g} € Z. (5.38)

(Let f,g € .# and A € A and define the sets Ay := {x € A| f(z) > g(z)} and

A, :={x € Alg(z) > f(x)}; then Ay, A, € A, AynNA, =0, and AfUA, = A;

hence [, max{f, g} du = fAf fdp+ [y, gdp < MAyp) +A(A4g) = A(A).)
Now define

c::sup/fdug)\(X)
feF Jx

and choose a sequence ¢; € .% such that lim;_, f « 9idp = c. Then it follows
from that f; := max{g1,¢2,...,0;} € F and [, gidpn < [, fidp < ¢
for all i« € N. Hence f; < f;11 for all « and lim;_, fX fidp = c. Define the
function f: X — [0,00] by f(x) := lim;_ fi(z) for x € X. Then it follows
from the Lebesgue Monotone Convergence Theorem that

/ fdu= hm/ fidu = c, /fdu: lim/fl-du§ AMA) forall Ae A
b'e 1—00 X A 11— 00 A

Hence f < oo p-almost everywhere by Lemma [1.47 and we may assume
without loss of generality that f(z) < oo for all x € X. Thus f € .Z.

We prove that [, fdu = A(A) for all A € A. Suppose otherwise that
there exists a set Ay € A such that on fdu < A(Ap). Then the formula

N(A) = \A) — /Afd,u for Ac A (5.39)

defines a finite measure by Theorem [1.40
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We prove that there is a measurable function h : X — [0, 00) such that

/ hdp >0, / hdu < N(A) for all A € A. (5.40)
X A
Define V(A

€= <3 o) S (5.41)

Since A is truly continuous with respect to u so is . Hence there is a § > 0
and a set F € A such that u(E) < oo and

Ae A, wANE) <o = N(A) <e. (5.42)

Take A := X \ E to obtain X'(X \ F) < ¢ and hence
N(E) > N(AgNE) =XN(Ag) — N(Ag\ E) =3 — XN(Ag\ F) > 2¢.
Then take A := Aj. Since N'(Agy) = 3¢ > ¢ by (5.41) it follows from (5.42)
that pu(E) > u(Ag N E) > § > 0. Define the signed measure \” : 4 — R by
HANE)
p(E)

for A € A. Then N (E) = N(E) —e > e. By the Hahn Decomposition
Theorem there exists a measurable set P € A such that

N'(ANP) >0, N(A\P)<0 forall Ae A

Since \'(E \ P) < 0 it follows that ¢ < X'(F) < N(ENP) < N(ENP).
Hence u(E N P) > § by (5.42). Now define

= e (5.44)

N(A) = N(A) — ¢ (5.43)

Then [ hdp > 0. Moreover, if A € A then X(ANP) > 0 and so, by (5.43),

N(ANP)> EW = /Ahd,u.

Thus [, hdp < N(A) for all A € A and so h satisfies (5.40) as claimed.
It follows from ([5.40)) that

/A<f+h>dus/Afdu+X<A> — \(A)

for all A € A and hence f+h e Z. Since [ (f+h)du=c+ [, hdu>c,
this contradicts the definition of ¢. Thus we have proved that [, fdu = A(A)
for all A € A and hence f satisfies . This completes the second proof
of Theorem [5.26] O
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5.5 Exercises

Exercise 5.27. Let (X, A, u) be a measure space such that u(X) < oo.
Define

p(A,B) = u(A\ B)+ u(B\ A) for A, B € A. (5.45)
Define an equivalence relation on A by A ~ B iff p(A, B) = 0. Prove that
p descends to a function p : A/~ x A/~ — [0,00) (denoted by the same
letter) and that the pair (A/~, p) is a complete metric space. Prove that the

function A — R : A — [, fdu descends to a continuous function on A/~
for every f € L' (u).

Exercise 5.28 (Rudin [17, page 133]). Let (X, A, 1) be a measure space.
A subset .Z C L'(p) is called uniformly integrable if, for every ¢ > 0,
there is a constant > 0 such that, for all £ € A and all f € .7,

/ f du’ <e.
E
Prove the following.

(i) Every finite subset of £!() is uniformly integrable. Hint: Lemma [5.21]

(ii) Vitali’s Theorem. Assume u(X) < oo, let f: X — R be measurable,
and let f, € LY (i) be a uniformly integrable sequence that converges almost
everywhere to f. Then f € LY(p) and lim, o [\ |f — ful dpp = 0.

Hint: Use Egoroft’s Theorem in Exercise [4.54]

(iii) The hypothesis p(X) < oo cannot be omitted in Vitali’s Theorem.
Hint: Consider the Lebesgue measure on R. Find a uniformly integrable
sequence f,, € L}(R) that converges pointwise to the constant function f = 1.

u(E) <o =

(iv) Vitali’s Theorem implies the Lebesgue Dominated Convergence Theo-
rem under the assumption p(X) < oo.

(v) Find an example where Vitali’s Theorem applies although the hypotheses
of the Lebesgue Dominated Convergence Theorem are not satisfied.

(vi) Find an example of a measure space (X, A, u) with u(X) < oo and a
sequence f, € L'(u) that is not uniformly integrable, converges pointwise
to zero, and satisfies lim,,_, fX fndp = 0. Hint: Consider the Lebesgue
measure on X = [0, 1].

(vii) Converse of Vitali’s Theorem. Assume pu(X) < oo and let f,, be a
sequence in L'(p) such that the limit limy, o [, fodp exists for all A € A.
Then the sequence f, is uniformly integrable.
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Hint: Let ¢ > 0. Prove that there is a constant 6 > 0, an integer ng € N,
and a measurable set Fy € £ such that, for all £ € A and all n € N,

p(E,E0)<57 n = ng -

[ fu)

(Here p(E, Ey) is defined by (5.45) as in Exercise [5.27)) If A € A satisfies
p(A) < 6 then the sets F := Ey\ A and F := EyUA both satisfy p(E, Ey) < d.
Deduce that, for all A € A and all n € N,

<e. (5.46)

szfg——ﬁm)du‘<:25. (5.47)

Now use part (i) to find a constant ¢’ > 0 such that, for all A € A,

p(A) < ¢ = sup
neN

Aﬁm%%. (5.48)

Exercise 5.29 (Rudin [17, page 134]). Let (X, A, 1) be a measure space
such that u(X) < oo and fix a real number p > 1. Let f : X — R be
a measurable function and let f, € L'(u) be a sequence that converges
pointwise to f and satisfies

sup [ [l d < o
X

neN
Prove that
feci.  Jim [ 17=plde=0
Hint: Use Vitali’s Theorem in Exercise [£.28
Exercise 5.30. Let X := R, denote by B C 2% the Borel o-algebra, and

let 4 : B — [0,00] be the restriction of the Lebesgue measure to B. Let
A: B — [0,00] be a measure. Prove the following.

(i) If B € Band 0 < ¢ < u(B) then there exists a Borel set A C B such that
p(A) = c. Hint: Show that the function f(t) := u(BN[—t,t]) is continuous.

(ii) If there exists a constant 0 < ¢ < oo such that
u(B) =c — A(B) =c.

for all B € B, then A\ < p.
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Exercise 5.31. Let X := R, denote by B C 2% the Borel o-algebra, let
p o B — [0,00] be the restriction of the Lebesgue measure to B, and let
v : B — [0,00] be the counting measure. Prove the following.

) p<v
(ii) p is not inner regular with respect to v.

(iii) There does not exist any measurable function f : X — [0, co] such that
p(B) = [, fdv for all B € B.

Exercise 5.32. Let X := [1,00), denote by B C 2% the Borel o-algebra,
and let o : B — [0, 00] be the restriction of the Lebesgue measure to B. Let
A B — [0, 00] be a Borel measure such that

A(B) = aA(aB) for all @« > 1 and all B € B. (5.49)

Prove that there exists a real number ¢ > 0 such that
A(B) := /de,u for all B € B, (5.50)
where f : [1,00) — [0, 00) is the function given by
f(zx) = ° for z > 1. (5.51)

Hint: Show that A([1,00)) < co and then that A < p.

Exercise 5.33. Let X := [0, 00) denote by B C 2% the Borel o-algebra, and
let p: B — [0, 00| be the restriction of the Lebesgue measure to B. Define
the measures A\, Ay : B — [0, 00] by

1 1
M (B) = —/ zdz, Ao (B) ::/ — dx
' ; n’ BNn,n+1] ’ B[1,00) z?

for B € B. (Here we denote by [, f(z)dz := [, f du the Lebesgue integral
of a Borel measurable function f : [0,00) — [0,00) over a Borel set B € B.)
Prove that A\; and A\ are finite measures that satisfy

)\1 < W, )\2 < W, )\1 < )\27 )\2 < )\1,

and

pE AL K A
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Exercise 5.34. Let (X, A, ) be a measure space. Show that the signed
measures A : A — R form a Banach space M = M (X, A) with norm

ALl = [AJ(X).
Show that the map
LYp) — M [f]u = g
defined by is an isometric linear embedding and hence L' (u) is a closed
subspace of M.

Exercise 5.35. Let (X,U) be a compact Hausdorff space such that every
open subset of X is o-compact and denote by B C 2% its Borel o-algebra.
Denote by C(X) := C.(X) the space of continuous real valued functions
on X. This is a Banach space equipped with the supremum norm

[fI}:= suplf ()]
reX

Let M(X) denote the space of signed Borel measures as in Exercise [5.34]
For A € M(X) define the linear functional Ay : C(X) — R by

M= [ rin

Prove the following.
(i) [|Axl| = |A]]. Hint: Use the Hahn Decomposition Theorem and the
fact that every Borel measure on X is regular by Theorem [3.18]

(ii) Every bounded linear functional on C'(X) is the difference of two positive
linear functionals. Hint: For f € C(X) with f > 0 prove that

AT(f) == sup {A(hf)| h € C(X),0<h <1}
= Sup{A(g)|g€ C(X),0<g< f}.
Here the second supremum is obviously greater than or equal to the first. To
prove the converse inequality show that, for all ¢ € C(X) with 0 < g < f
and all € > 0 there is an h € C(X) such that 0 < h <1 and |A(g—hf)| <e.
Namely, find ¢ € C(X) such that 0 < ¢ <1, ¢(x) = 0 when f(z) <e/2|A||
and ¢(z) = 1 when f(x) > ¢/ ||Al|; then define h := ¢g/f. Once is
established show that AT extends to a positive linear functional on C'(X).
(iii) The map M(X) — C(X)* : A — A, is bijective. Hint: Use the Riesz
Representation Theorem [3.15]

(iv) The hypothesis that every open subset of X is o-compact cannot be
removed in part (i). Hint: Consider Example

(5.52)
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Exercise 5.36. Let (X, A, 1) be a measure space and let f : X — [0, 00) be
a measurable function. Define the measure py : A — [0, 0o] by

pr(A) = /Afd,u for A € A. (5.53)

(See Theorem [1.40}) Prove the following.

(i) If p is o-finite so is fiy.

(ii) If o is semi-finite so is py.

(iii) If o is localizable so is jiy.

Note: See Theorem for (i) and [4, Proposition 234N] for (ii) and (iii).
It is essential that f does not take on the value co. Find an example of
a measure space (X, .4, u) and a measurable function f : X — [0, 00] that
violates the assertions (i), (ii), (iii).

Hint 1: To prove (ii), fix a set A € A, define Ay := {x € A| f(z) > 0},
and choose a measurable set E2 € A such that E C Ay and 0 < p(E) < oo.
Consider the sets E,, := {z € E| f(z) <n}.

Hint 2: To prove (iii), let £ C A be any collection of measurable sets and
choose a measurable p-envelope H € A of £. Prove that the set

Hy:={x e H|f(x) >0}

is a measurable ps-envelope of £. In particular, if N € A is a measurable
set such that pup(ENN) =0 for all £ € £, define Ny :={x € N| f(z) > 0},
show that u(H N Ny) =0, and deduce that ps(Hf N N) = pg(H N Ny) = 0.



Chapter 6

Differentiation

This chapter returns to the Lebesgue measure on Euclidean space R™ intro-
duced in Chapter[2] The main result is the Lebesgue Differentiation Theorem
(Section [6.3)). It implies that if f : R — R is a Lebesgue integrable func-
tion then, for almost every element x € R", the mean value of f over a ball
centered at x converges to f(z) as the radius tends to zero. Essential ingre-
dients in the proof are the Vitali Covering Lemma and the Hardy-Littlewood
Mazimal Inequality (Section . One of the consequences of the Lebesgue
Differentiation Theorem is the Fundamental Theorem of Calculus for abso-
lutely continuous functions of one real variable (Section [6.4). The Lebesgue
Differentiation Theorem also plays a central role in the proof of the Calderon—
Zygmund inequality (Section . The chapter begins with a discussion of
weakly integrable functions on general measure spaces.

6.1 Weakly Integrable Functions

Assume throughout that (X, A, ;1) is a measure space. Let f: X — R be a
measurable function. Define the function «; : [0, 00) — [0, 0o] by

Ri(t) == k(L f) == p(A® ), A f) = {w e X|1f(@)] >}, (6.1)

for t > 0. The function kf is nonincreasing and hence Borel measurable.
Define the function f*: [0, 00) — [0, 00] by

[ (o) :=1inf{t > 0| k(t, f) < a} for 0 < a < . (6.2)
Thus f*(0) = ||f|l., and f* is nonincreasing and hence Borel measurable.

By definition, the infimum of the empty set is infinity. Thus f*(«) = oo if

185
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and only if u(A(t, f)) > a for all t > 0. When f*(a) < oo it is the smallest
number ¢ such that the domain A(¢, f) (on which |f| > t) has measure at
most «. This is spelled out in the next lemma.

Lemma 6.1. Let 0 < a < oo and 0 <t < oo. Then the following holds.

(i) f*(a) = oo if and only if k¢(s) > a for all s > 0.

(ii) f*(a) =t if and only if kf(t) < o and k¢(s) > a for 0 < s < t.

(iii) f*(a) <t if and only if ks(t) < a.

Proof. 1t follows directly from the definition of f* in that f*(a) = o0
if and only if k(s, f) > a for all s € [0, 00) and this proves (i).

To prove (ii), fix a constant 0 < ¢ < oo. Assume first that x(t, f) < «
and k(s,f) > a for 0 < s < t. Since k; is nonincreasing this implies
k(s,f) < k(t,f) < a for all s > t and hence f*(a) = t by definition.
Conversely, suppose that f*(«) = t. Then it follows from the definition of

f* that k(s, f) < a for s > t and k(s, f) > a for 0 < s < t. We must prove
that k(t, f) < a. To see this observe that

At f) = J At + 1/n, ).

n=1

Hence it follows from part (iv) of Theorem that
55(8) = B(A( £)) = lm p(A(t+ 1/n, £)) = lim 5(t+ 1/n, ) < a.

This proves (ii). If f*(a) < tthen ky(t) < kp(f*(a)) < aby (ii). frs(t) <
then f*(a) < ¢ by definition of f*. This proves (iii) and Lemma [6.1] O

Lemma 6.2. Let f,g: X — R be measurable functions and let ¢ € R. Then

£l = sup af™(er) = suptrs () < [ £y (6.3)

lef Nl o0 = le 11100 » (6.4)

1f + 9l 00 < ”f[“” + “f'll’;’ foro< <1, (6.5)

VIF+ 3l < /1o + 4/ llglh e (6.6)

Moreover || f|l, ., = 0 if and only if f vanishes almost everywhere. The

inequality 15 called the weak triangle inequality.
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Proof. For 0 < t,c < oo it follows from part (iii) of Lemma(6.1] that
th(t,f) <c <= k(t,f) <ct™ <= flct) <t &= ct ' f () <e

This shows that sup,.q tk(t, f) = sup,-o @ f*(a). Moreover,

it f) = tu(A(t, f)) < /

fldp < / fldu
A(t,f) X

for all ¢ > 0. This proves .

For ¢ > 0 equation follows from the fact that A(t,cf) = A(t/c, f)
and hence r(t,cf) = k(t/c, f) for all t > 0. Since ||[=f|, , = [[fll; o b¥
definition, this proves .

To prove ([6.5), observe that A(t, f +g) C A(Xt, f)UA((1 = N)t, g), hence

K(t, f+g) < KL f) +R((1 = M, g), (6.7)
and hence

M, gl
- A 1—A

for all £ > 0. Take the supremum over all ¢ > 0 to obtain (6.5)).
The inequality follows from ([6.5)) and the identity

&:\/5-1-\/1_) for a,b > 0. (6.8)

This is obvious when a = 0 or b = 0. Hence assume a and b are positive and
define the function £ : (0,1) = (0,00) by h(X) := ¢ + 5. It satisfies

te(t, f+g) <tr(At, f) +tc((1 — N, g)

o,
A

n
0<A<1

b a
W)= —s——=
() (I1—=X)2 A2
and hence has a unique critical point at
Va
)\0 = —_——
Va+ b

Since h(\g) = (v/a++/b)?, this proves (6.8). The inequality then follows
by taking a := || f||, ., and b= [|g]|, .-

The last assertion follows from the fact that || f]|, ., = 0 if and only if
kf(0) = 0 if and only if the set A(0, f) = {x € X | flz) # 0} has measure
zero. This proves Lemma [6.2 O]
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Example 6.3. This example shows that the weak triangle inequality is
sharp. Let (R,.4,m) be the Lebesgue measure space and define f,g: R — R

by
1 1
f(x).z;, g(m).zl_x for0 <z <1

and f(z) := g(z) :=0 for z <0 and for z > 1. Then

Hf”loo = HgHI,oo =1, I f +g”1,oo = 4.

Definition 6.4. Let (X, A, 1) be a measure space. A measurable function
f X — R is called weakly integrable if || f||, ., < 0o. The space of weakly
integrable functions will be denoted by

L1 = {f : X = R| f is measurable and [FAIFISEES oo}.

The quotient space
Lh(p) o= L () />

under the equivalence relation f ~ g iff f = g p-almost everywhere is called
the weak L' space. It is not a normed vector space because the function
LY®(p) — [0,00) @ [f], + | f]l1,o does not satisfy the triangle inequality, in
general, and hence is not a norm. Howewver, it is a topological vector space
and the topology s determined by the metric

dioo([flus [9) = \If =gl for fog € LY(p). (6.9)

For the Lebesgue measure space (R, A,m) we write LY®(R") := L£L1°°(m)
and LY(R™) := LY (m).

A subset of L*°(u) is open in the topology determined by the metric
if and only if it is a union of sets of the form {[g],, € L' (u) | If — gll;oc <7}
with f € £1°(p) and » > 0. A sequence [f;], € L*(u) converges to [f], in
this topology if and only if lim; o || fi — f|l, ., = 0. The inequality in
Lemma [6.2] shows that

LY(p) € LM (p)

for every measure space (X, A, ). In general, L (u) is not equal to L' ().
For example the function f : R — R defined by f(x) := 1/x for z > 0 and
f(z) := 0 for z <0 is weakly integrable but is not integrable.
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Theorem 6.5. The metric space (L (1), d; ) is complete.

Proof. Choose a sequence of weakly integrable functions f; : X — R whose
equivalence classes [f;], form a Cauchy sequence in L*°(x) with respect to
the metric (6.9). Then there is a subsequence i; < iy < i3 < --- such that
| fir — fszrlP <2 % for all k € N. For k, ¢ € N define

Ak = A(Q_k, flk — fik+1)7 Eg = U Ak, E = ﬂ Eg.
k= /=1

Then 27%1u(Ax) < || fin = firsa ||1 o < 272% for all k € N, hence

o0

(L) SZ (Ax) SZ
k= Py

for all £ € N, and hence u(E) = 0. If z € X \ E then there exists an ¢ € N
such that = ¢ Ay for all k& > ¢ and so |fi, () — fi,,(z)| < 27% for all k > ¢.
This shows that the limit f(x) := limy_ fi, (z) exists for all z € X \ E.
Extend f to a measurable function on X by setting f(x) := 0 for x € E.

We prove that lim; , || f; — fll,; .. = 0 and hence also f € £°°(u). To
see this, fix a constant ¢ > 0 and choose an integer ig € N such that

i,jGN, Z,]Z’LO — 4||f1_f3||1,oo<€
Now fix a constant ¢t > 0 and choose ¢ € N such that
ie > o, 227 < ¢, 227t < ¢.

If © ¢ Ey then x ¢ Ay, for all k > ¢, hence |f;, (z) — fi,., (x)] < 27% for k > ¢,

and hence |f;, (v) = f(z)| < 3507 |fi (2) = fir. (0)] < 352,270 =270 < t/2.
This shows that A(t/2, fi, — f) C E,; and hence

g, 1(t/2) = t( A2, fi, — 1)) < tu(Ey) <121 < /2.
With this understood, it follows from (6.7)) with A = 1/2 that
by g (8) < g, (1/2) + g, 5 (1/2) S 201 fi = fill o +2/2 < €
for all 7+ € N with 7 > 4y. Hence

1fi = fll10o = suptry,—s(t) <e
t>0

for every integer ¢ > i and this proves Theorem [6.5] O
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6.2 Maximal Functions

Let (R,.A,m) be the Lebesgue measure space on R. In particular, the length
of an interval I C R is m(/). As a warmup we characterize the differentia-
bility of a function that is obtained by integrating a signed measure.

Theorem 6.6. Let A : A — R be a signed measure and define f : R — R by
f(z) := A((—o00, 1)) for z € R. (6.10)

Fiz two real numbers x, A € R. Then the following are equivalent.
(i) f is differentiable at x and f'(x) = A.
(ii) For everye > 0 there is a § > 0 such that, for every open interval U C R,

zelU, mU)<d = ‘——A‘gs. (6.11)
Proof. We prove that (i) implies (ii). Fix a constant ¢ > 0. Since f is

differentiable at = and f'(x) = A, there exists a constant § > 0 such that,
for all y € R,

O<|z—y|<o — ‘%—A‘ <e. (6.12)
Let a,b € R such that a < x < band b —a < J. Then, by (6.12]),
r—a b—a:

or, equivalently,

—e(v—a) < f(x) - f(a) — Alw —a) <
—e(b—x) < f(b) - f(x) — A(b— =) < =(b— ).

Add these inequalities to obtain

—e(b—a) < f(b) = fla) — A(b—a) < e(b—a).
Since A([a,b)) = f(b) — f(a) and m([a,b)) = b — a it follows that
)
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Replace a by a + 27% and take the limit kK — oo to obtain

Meth
m((a,b))
Thus we have proved that (i) implies (ii).

Conversely, assume (ii) and fix a constant € > 0. Choose 0 > 0 such

that (6.11) holds for every open interval U C R. Choose y € R such that
r <y < x+4. Choose k € Nsuch that y—z+27% < §. Then Uy := (z—27% y)
is an open interval of length m(Uy) < § containing x and hence

‘A(Uk)
m(Uy)
by . Take the limit £ — oo to obtain
) = 1) Az | AT
rEran e A AR

Thus (6.12)) holds for x < y < x + § and an analogous argument proves
the inequality for x — 0 < y < x. Thus (ii) implies (i) and this proves
Theorem [6.6] O

—A‘<€

k—00

The main theorem of this chapter will imply that, when A is absolutely
continuous with respect to m, the derivative of the function f in (6.10) exists
almost everywhere, defines a Lebesgue integrable function f’: R — R, and
that

AA) = /A f'dm

for all Lebesgue measurable sets A € A. It will then follow that an absolutely
continuous function on R can be written as the integral of its derivative. This
is the fundamental theorem of calculus in measure theory (Theorem .

The starting point for this program is the assertion of Theorem [6.6 It
suggests the definition of the derivative of a signed measure

AMA—=R

at a point € R as the limit of the quotients A(U)/m(U) over all open
intervals U containing = as m(U) tends to zero, provided that the limit
exists. This idea carries over to all dimensions and leads to the concept of a
maximal function which we explain next.
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Notation. Fiz a natural number n € N. Let (R", A,m) denote the
Lebesgue measure space and let

B c 2F"

denote the Borel o-algebra of R™ with the standard topology. Thus L'(R™)
denotes the space of Lebesque integrable functions f : R™ — R. An element of
LY(R™) need not be Borel measurable but differs from a Borel measurable func-
tion on a Lebesque null set by Theorem and part (v) of Theorem [1.55
For x € R™ and r > 0 denote the open ball of radius r, centered at x, by

Bi(z) ={yeR" ||z —y| <r}.

=g+ + e

denotes the Euclidean norm of &€ = (&1,...,&,) € R™

Here

Definition 6.7 (Hardy—-Littlewood Maximal Function).
Let p: B — [0,00) be a finite Borel measure. The maximal function of p

is the function
My : R" — [0, 0]

defined by

(Mp)(zx) := ?«153 % (6.13)

The maximal function of a signed measure A : B — R is defined as the

maximal function
MM\ := M|A| : R" — [0, o]

of its total variation |\ : B — [0, 00).

Theorem 6.8 (Hardy—Littlewood Maximal Inequality).

Let A : B — R be a signed Borel measure. Then the mazimal function
MM\ :R"™ — [0,00] in Definition 18 lower semi-continuous, i.e. the pre-
image of the open interval (t, 00| under M X is open for all t € [0, 00]|. Hence
MM is Borel measurable. Moreover,

IMA} o < 3"[A[(R™) (6.14)
and so M\ agrees almost everywhere with a function in £ (R™).

Proof. See page [195] O
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The proof of Theorem [6.8 relies on the following two lemmas.

Lemma 6.9. Let u : B — [0,00) be a finite Borel measure. Then the
mazximal function Mu : R™ — [0, 00| is lower semi-continuous and hence is
Borel measurable.

Proof. Fix a real number ¢ > 0 and define
U =A(t,Mp) ={x e R"| (Mp)(z) > t}. (6.15)

We prove that U, is open. Fix an element z € U;. Since (Mpu)(x) > t there
exists a number r > 0 such that

(B, (x))

LS B, (@)

Choose § > 0 such that

(r+6)" _ plBu(x)

T S mB,@)

Choose y € R" such that |y — 2| < d. Then B,(z) C B,;5(y) and hence

wW(B,is(y) > (B (x))

>

C0 (B, ()
t-m(Bris(y)):

This implies

N(Br-‘rzS(y))
M) 2 )

and hence y € U;. This shows that U, is open for all t > 0. It follows that
Us = U,oo Ut is open and U; = R" is open for ¢ < 0. Thus My is lower
semi-continuous as claimed. This proves Lemma [6.9 O

>

The Hardy-Littlewood estimate on the maximal function My is equiva-
lent to an upper bound for the Lebesgue measure of the set U; in (6.15)). The
proof relies on the next lemma about coverings by open balls.
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Lemma 6.10 (Vitali’s Covering Lemma). Let ¢ € N and, fori=1,...,¢,
let x; € R™ and r; > 0. Define

=1
Then there exists a set
Sc{l,....0}
such that
B, (z;) N By (z;) =0 foralli,j € S with i # j (6.16)
and
W C | Bar, (). (6.17)
i€s

Proof. Abbreviate B; := B, (x;) and choose the ordering such that
2Ty 2 2Ty

Choose 71 := 1 and let i3 > 1 be the smallest index such that By, N B;, = 0.
Continue by induction to obtain a sequence

=1 <ig < <, </

such that
Biij’ij/ :@ fOI'j?éj/

and
Biﬂ(BhU“-UBij)7é® fOI'ij<i<’ij+1

(respectively for ¢ > i, when j = k). Then
B; C 83”1 (3321) U---uU B3T‘ij (Q?zj> for ’ij <1< ?;j+1
and hence

l k
W = U B, C U B3Ti]~ (]sz)
i=1 j=1

With S := {iy, ..., 4} this proves (6.17) and Lemma m ]
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Proof of Theorem[6.8. Fix a constant ¢t > 0. Then the set U; := A(t, M \) is
open by Lemma [6.9f Choose a compact set K C U,. If z € K C U, then
(MX)(x) >t and so there exists a number r(x) > 0 such that

[A(Br@)(2))

(Brn (@) > t. (6.18)

Since K is compact there exist finitely many points z;,...,z, € K such
that K C J'_, B,,(z;), where r; := 7(z;). By Lemma there is a subset
S C {1,...,¢} such that the balls B, (x;) for i € S are pairwise disjoint and
K C U,cg Bsr, (). Since m(Bs,) = 3"m(B,) by Theorem this gives

m(K) <30S m(B (1) < o S N(Bo (1)) < S A (RY).
t t

€S €S

Here the second step follows from (6.18) with r; = r(z;) and the last step
follows from the fact that the balls B, (x;) for i € S are pairwise disjoint.
Take the supremum over all compact sets K C U, to obtain

m(A(t, MA)) = m(U;) < 3;\)\](]1%”). (6.19)

(See Theorem [2.13]) Multiply the inequality (6.19) by ¢ and take the supre-
mum over all real numbers ¢ > 0 to obtain ||[MA[|, , < 3"|A|(R"). This
proves Theorem [6.8] O

Definition 6.11. Let f € L'(R"). The maximal function of f is the
function M f :R"™ — [0,00) defined by

1
WMD) =5 @) /Br(m)

Corollary 6.12. Let f € LY(R") and define the signed Borel measure yy
on R"™ by ps(B) := [, fdm for every Borel set B C R™. Then

|fldm  for x € R". (6.20)

Proof. The formula |us|(B) = [p|f|dm for B € B shows that M f = M.
Hence the assertion follows from Theorem [6.8] O



196 CHAPTER 6. DIFFERENTIATION

Corollary shows that the map f — M f descends to an operator
(denoted by the same letter) from the Banach space L'(R") to the topological
vector space L>°(R"). Corollary also shows that the resulting operator

M : L*(R™) — LM(R™)

is continuous (because |M f—Mg| < M(f—g)). Note that it is not linear. By
Theorem [6.§] it extends naturally to an operator A — M from the Banach
space of signed Borel measures on R" to L1*°(R"). (See Exercise [5.34])

6.3 Lebesgue Points

Definition 6.13. Let f € LY(R"). An element x € R™ is a called a
Lebesgue point of f if

1

liy s /Brm‘f — f(@) dm =0, (6.21)

In particular, x is a Lebesque point of f whenever f is continuous at x.
The next theorem is the main result of this chapter.

Theorem 6.14 (Lebesgue Differentiation Theorem).
Let f € LY(R™). Then there exists a Borel set E C R™ such that m(E) = 0
and every element of R" \ E is a Lebesgue point of f.

Proof. For f € L}(R™) and r > 0 define the function T, f : R™ — [0, 00) by

(T, f)(x) :== /B ( )]f — f(z)|dm for x € R™. (6.22)

m(B,(z))

One can prove via an approximation argument that 7. f is Lebesgue measur-
able for every r > 0 and every f € £L!(R"). However, we shall not use this
fact in the proof. For f € L}(R") define the function T'f : R™ — [0, oo] by

(Tf)(z) := limsup(T, f)(x) for x € R™. (6.23)

r—0

We must prove that T'f = 0 almost everywhere for every f € L}(R").
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To see this, fix a function f € £L!(R™) and assume without loss of gener-
ality that f is Borel measurable. (See Theorem and part (v) of Theo-
rem [1.55]) By Theorem there exists a sequence of continuous functions
g; - R — R with compact support such that

1
||f—gi||1<§ for all i € N.

Since g; is continuous we have T'g; = 0. Moreover, the function
hi = [f—gi

is Borel measurable and satisfies

Th)w) = gy o e o)l
1
- m(B(x)) /Br(:r)|hi| dm + (@)
< (Mh)(a) + lhu(x)

for all x € R™. Thus
Tohi < Mh; + ||

for all 7 and all » > 0. Take the limit superior as r tends to zero to obtain
Th; < Mh; + |k
for all <. Moreover, it follows from the definition of T, that
T.f =T (g + hi) < T.g; + T,hy
for all 7 and all » > 0. Take the limit superior as r tends to zero to obtain
Tf<Tg+Th; =Th; < Mh; + |h|
for all 7. This implies
A(e, Tf) C A(e/2, Mh;) U A(g/2, h;). (6.24)

for all 7 and all ¢ > 0. (See equation (6.1]) for the notation A(e,T'f) etc.)
Since h; and Mh; are Borel measurable (see Theorem the set

Ei(e) := A(e/2, Mh;) U A(e/2, h;) (6.25)
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is a Borel set. Since ||h;]]; < 27" we have

2 2 1
m(A(e/2,h;)) < B 173l 0 < z [hill, < 31z

and, by Theorem [6.8]

2 23" 3"

m(A(g/Z’MhZ)) < g ||Mh’i”1,oo < c thHl < 9i—1g"

Thus g1 41

E; < — )

m(B(E) < 21

Since this holds for all 7« € N it follows that the Borel set
E(e) =) Ei(e)
i=1

has Lebesgue measure zero for all € > 0. Hence the Borel set

E = G E(1/k)

has Lebesgue measure zero. By (6.24) and (6.25]), we have

Ak, Tf) C B(1/k)

for all £k € N and hence
{z eR"[(Tf)x) #0} = |J{zeR"|(Tf)(z) > 1/k}

- Jaa/kry)
c DE(l/k)
_ 7

This shows that (T'f)(z) = 0 for all z € R™\ E and hence every element of
R™\ E is a Lebesgue point of f. This proves Theorem m m
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The first consequence of Theorem discussed here concerns a signed
Borel measure A on R" that is absolutely continuous with respect to the
Lebesgue measure. The following theorem provides a formula for the function

f in Theorem (also called the Radon—Nikodym derivative of \).

Theorem 6.15. Let X\ : B — R be a signed Borel measure on R™ that is
absolutely continuous with respect to the Lebesque measure. Choose a Borel
measurable function f € LY(R™) such that A(B) = [, fdm for all B € B.
Then there exists a Borel set E C R" such that m(E) =0 and

for all z € R"\ E. (6.26)

Proof. By Theorem there exists a Borel set £ C R™ of Lebesgue measure
zero such that every element of X \ E is a Lebesgue point. Since

ST o TN

1
for all » > 0 and all z € R™, it follows that (6.26)) holds for all z € R™\ E.
This proves Theorem [6.15] O]

Theorem 6.16. Let f € LY(R™) and let x € R™ be a Lebesque point of f.
Fiz two constants 0 < a < 1 and € > 0. Then there exists a 0 > 0 such that,
for every Borel set E € B and every r > 0,

r <9,

E C B,(x), - fdm— f(x)| <
m(E) > am(B.(z)) ’m )/

Proof. Since m is a Lebesgue point of f, there exists a constant o > 0 such
that m(B g wlf — f(@)[dm < ae for 0 <7 < 4. Assume 0 <7 <§
and let E C B (x) be a Borel set such that m(E) > am(B,(z)). Then

g L 1@| < s 17 sl
= f@)]dm

e. (6.27)

Sm/r

< €.

This proves Theorem [6.16| O]



200 CHAPTER 6. DIFFERENTIATION

The Lebesgue Differentiation Theorem can be viewed as a theorem
about signed Borel measures that are absolutely continuous with respect to
the Lebesgue measure. The next theorem is an analogous result for signed
Borel measures that are singular with respect to the Lebesgue measure.

Theorem 6.17 (Singular Lebesgue Differentiation).
Let A : B — R be a signed Borel measure on R" such that X\ L m. Then
there ezists a Borel set E C R"™ such that m(E) =0 = |A|(R"\ E) and

L N(B @)
8 m(B.(2)

Proof. The proof follows an argument in Heil [7, Section 3.4]. By assumption
and Lemma there exists a Borel set A C R™ such that

m(A) =0, IA|[(R™\ A) = 0.
For € > 0, define the set

=0 for all x € R™\ E. (6.28)

A= {xeR"\A

B
s (B, (2) ~ } '

We prove that A. is a Lebesgue null set for every ¢ > 0. To see this, fix

two constants ¢ > 0 and 6 > 0. Since the Borel measure |\| is regular by
Theorem there exists an open set Uy C R™ such that

Rn\AC Us, |)\|(U5) < 4.
For x € A, choose a radius r = r(z) > 0 such that
A Brx
P(Bri(@)
m(Br(z) (1))

and consider the open set Ws := (J,c 4. Br)(z) C Us. Fix a compact subset
K C W;s and cover K by finitely many of the balls B, (x) with € A.. By
Vitali’s Covering Lemma there are elements x1,...,zy € A, such that

the balls B, (;,)(z;) are pairwise disjoint and K C Ufil B3y (z;) (). Thus

BT(x) (.%‘) C Ug,

N 3 X 3n 35
m(K) <) 3"m(Bu, () < . > IA(Bran (@) < —IWs) = —
i=1 =1

This holds for every compact set K C Wy and hence m(W;) < 3"§/e. Since
0 > 0 was arbitrary, the set A. is contained in an open set of arbitrarily small

Lebesgue measure and so is a Lebesgue null set as claimed. This implies that
the set E := AU, A1k is a Lebesgue null set. It satisfies |\|[(R"\ E) =0

and (6.28)) by definition and this proves Theorem [6.17] O



6.4. ABSOLUTELY CONTINUOUS FUNCTIONS 201

6.4 Absolutely Continuous Functions

Definition 6.18. Let I C R be an interval. A function f: 1 — R is called
absolutely continuous if for every e > 0 there exists a & > 0 such that,
for every finite sequence s1 < t; < 59 <ty <--- < s, <tyinl,

y4 V4
Msi—til<s = D |f(s) - ft)] <e. (6.29)

FEvery absolutely continuous function is continuous.

The equivalence of (i) and (iii) in the following result is the Fundamental
Theorem of Calculus for Lebesgue integrable functions. The equivalence
of (i) and (ii) is known as the Banach—Zarecki Theorem. For functions
of bounded variation see Exercise [6.20 below.

Theorem 6.19 (Fundamental Theorem of Calculus).
Let I = [a,b] C R be a compact interval, let B C 2! be the Borel o algebra,
and let m : B — [0,00] be the restriction of the Lebesque measure to B. Let
f:I — R be a function. Then the following are equivalent.

(i) f is absolutely continuous.

(ii) f is continuous, it has bounded variation, and if E C I is a Lebesgue
null set then so is f(E).

(iii) There is a Borel measurable function g : I — R such that [,|g| dm < co
and, for all x,y € I with x < y,

) — flx) = / " gty dt. (6.30)

The right hand side denotes the Lebesque integral of g over the interval [x,y].

If (i7i) holds then there exists a Borel set E C I such that m(F) = 0 and,
forallx € I\ E, f is differentiable at x and f'(x) = g(z).

Proof. We prove that (iii) implies the last assertion of the theorem. Thus
assume that there exists a function g € £(I) that satisfies for all
z,y € I with x < y. Then Theorem [6.14] asserts that there exists a Borel
set B C I of Lebesgue measure zero such that every element of I \ E is a
Lebesgue point of g. By Theorem [6.16| with a = 1/2, every element « € I\ E
satisfies condition (ii) in Theorem with A := g(x). Hence Theorem
asserts that the function f is differentiable at every point x € I\ E and
satisfies f'(z) = g(x) forx € I\ E.
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We prove that (iii) implies (i). Thus assume f satisfies (iii) and define
the signed measure A : B — R by

A(B) ::/Bgdm (6.31)

for every Borel set B C I. Then A is absolutely continuous with respect to
the Lebesgue measure and
A(E) = [ ol dm

for every Borel set B C I. Now let ¢ > 0. Since |A\| < m it follows from
Lemma [5.21] that there exists a constant 6 > 0 such that |A\|(B) < ¢ for every
Borel set B C I with m(B) < §. Choose a sequence s1 <ty < -+ < s, <ty
in I such that Zf:1|ti — ;| < 0 and define U; := (s;,t;) fori =1,...,¢. Then
the Borel set B := Ule U; has Lebesgue measure m(B) = Zf:1|ti — 8| < 4.
Hence |A[(B) < . Since

F(t) — F(s0)] = ] / igdm\ < [ Iolam = 1wy

for all 7 it follows that
¢

G si)| < ZMI = [Al(B) <

=1

Hence f is absolutely continuous.

We prove that (i) implies (ii). Assume f is absolutely continuous. It
follows directly from the definition that f is continuous, and that it has
bounded variation is part (v) of Exercise [6.20 Now suppose that E C [
is a Lebesgue null set and assume without loss of generality that a,b ¢ E.
Fix any constant € > 0 and choose § > 0 such that holds. Since the
Lebesgue measure is outer regular by Theorem there exists an open
set U C int(!) such that £ C U and m(U) < §. Choose a (possibly finite)
sequence of pairwise disjoint open intervals U; C I such that U = J, U;.
Choose s;,t; € U; such that f(s;) = infy, f and f(¢;) = supy, f. Then it
follows from that Y. m(f(U;)) = >_.(f(t;) — f(s:)) < ¢ for every finite
sum. Take the limit to obtain m(f(U)) < >, m(f(U;)) < e. Since € > 0 was
chosen arbitrary and the Lebesgue measure is complete, it follows that f(F)
is a Lebesgue measurable set and m(f(E)) = 0.
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We prove that (ii) implies (iii). Assume f satisfies (ii). Then f has
bounded variation and under this assumption Exercise below outlines
a proof that there exists a signed Borel measure A : B — R such that
fly) = f(x) = A(x,y]) for x,y € I with = < y. Since AT and A~ are regular
by Theorem |3.18 and f is continuous, we have

fy) = f(z) = Az, y]) = M(z,y]) = A[z,y)) = A((z,y)) (6.32)
for all z,y € I with x < y. By the Lebesgue Decomposition Theorem [5.17]
there exist two signed Borel measures \,, \; : B — R such that

A= Ag + A, Ao K M, As L m. (6.33)

Since A\, < m it follows from Theorem that there is an integrable
function g € £(I) such that

M(B) = /B g dm (6.34)

for every Borel set B C I. Define the functions f,, fs: [ — R by
fule) = £(@) + Mallasa) = f@) + [ gOdt, o) = (o).

Then f = f,+fs by and (6.33). Since (iii) implies (i) and (i) implies (ii)
(already proved) both functions f and f, satisfy (ii) and f, is absolutely
continuous. Moreover f, = f — f, is continuous.

It remains to prove that f; = 0. The proof given below follows an ar-
gument in Heil [7, Section 3.5.4]. By Theorem [6.17] there exists a Lebesgue
null set E; C I such that a,b € E; (without loss of generality) and

lim IAs((x —ryz+71))|

r—0 r

|As|(1\ Es) =0, =0 forallzel\E;.

This implies that every element x € I\ E satisfies condition (ii) in Theo-
rem with A = 0 and f replaced by f;. Hence f, is differentiable at every
point x € I\ Eg and fl(z) =0forz € I\ E.

Let A = AT — A~ be the Jordan decomposition in Definition Then,
by Lemma At and A\ are absolutely continuous with respect to the
Lebesgue measure. Now define the monotone functions f*: I — R by

@)= fla) + X ([a,2]), [ (2) == A ([a,2])
for x € I. Then f = f* — f~. Moreover, by Lemma the functions f*

are absolutely continuous and so is the function f, = f* — f~ — f,. Since (i)
implies (ii) (already proved), this shows that fs(FEs) is a Lebesgue null set.
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We claim that fs(I \ E;) is also a Lebesgue null set. To see this, fix a
constant € > 0. For n € N define the set

An::{xEI\ES

veLle=sl <t = |1o) - £ <clo—ol}.

Then
A, C Ana for all n € N and I'\E, = U A,.

neN

Here the last assertion follows from the fact that f; is differentiable on I\ Fj
with derivative zero. We prove that the Lebesgue outer measure of the set
fs(I'\ Es) satisfies the estimate

V(f(I\E)) < e(b—a+2). (6.35)

To see this, cover the set A, by at most countably many open intervals U;,
each of length less than 1/n, such that

Zm(Ui) <v(A,) +e

and each interval U; contains an element of A,. Then f(U;) is contained in
an interval of length at most em(U;), by definition of A,,. Hence

v(f(An) <Y m(U;) < e(v(Ay) +¢) <e(b—a+e).

Since the Lebesgue outer measure is continuous from below by part (iii) of

Theorem 2.13] and
fS(]\ES) = U fs(An)v

neN
it follows that

V(TN E)) = im v(f(4) < (b= a+2).
This proves . Since ¢ > 0 was chosen arbitrary, this implies that
fs(I'\ Ej) is a Lebesgue null set as claimed. Since fy(Fj) is also a Lebesgue
null set, as noted above, it follows that fs(I) is a Lebesgue null set. Since f
is continuous and fs(0) = 0 by definition, this implies fs = 0. Hence f = f,
is absolutely continuous and this proves Theorem [6.19} O
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6.5 Exercises

Exercise 6.20. Let I = [a,b] C R be a compact interval and let B C 27
be the Borel o-algebra. A function f : I — R is said to be of bounded
variation if

y4
V(f)i= sup Y |f(t:) — fltin)] < oo (6.36)

a=to<t1<---<tp=b i—1

Denote by BV(I) the set of all functions f : I — R of bounded variation.
This is a real vector space. Functions of bounded variation have at most
countably many discontinuities and the left and right limits exist everywhere.
Prove the following.

(i) Every monotone function f : I — R has bounded variation.

(ii) Let f € BV(I) be right continuous. Then there exist right continuous
monotone functions f* : I — R such that f = f* — f~. Hint: Define

F(z) :=V(flua) =  sup > |f(t:) = f(ti1)| (6.37)

a=to<t1<--<tp=x e

for a < x < b. Prove that F is right continuous and F' 4+ f are monotone.
(iii) If f is continuous then the function F in (6.37) is continuous.

(iv) Let f: I — R be right continuous. Then f € BV([) if and only if there
exists a signed Borel measure A = Ay : B — R such that A({a}) =0 and

f(z) = f(a) = Ma, z]) fora <z <b. (6.38)
Hint: Assume f is monotone. For h € C(I) define

b ¢
As(h) = / hdf = sup Z ( inf h) () = f(tiz1)). (6.39)
a a=to<t1<--<tg=b "] [ti—1,t:]

(This is the Riemann—Stieltjes integral. See Korner [9] and compare it
with the Riemann integral [9, (I8 21].) Prove that A, : C(I) — R is a positive
linear functional. Use the Riesz Representation Theorem to find a Borel
measure \ : B — [0,00) such that Ag(h) = [, hdX; for all h € C(I). Use
the fact that f is right continuous to prove that A; satisfies ([6.38).

(v) If f € BV(I) is right continuous and Ay is as in (iv) then V(f) = |A¢|({).

(vi) Every absolutely continuous function f : I — R has bounded variation.
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Exercise 6.21. Let (R,.A,m) be the Lebesgue measure space and fix a con-
stant 0 < & < 1/2. Prove that there does not exist a Lebesgue measurable

set ' C R such that
m(ENIT)

m(I)
for every nonempty bounded open interval I C R. Hint: Consider the
function f := xpn-1,) and define the measure py : B — R by

1 (B) = /dem —m(BAEN[-1,1)).

Examine the Lebesgue points of f. (Compare this with Exercise )

Exercise 6.22. Prove the Theorem of Vitali-Carathéodory:

Let (X,U) be a locally compact Hausdorff space and let B C 2% be its Borel
o-algebra. Let p : B — [0,00] be an outer reqular Borel measure that is
inner reqular on open sets. Let f € L'(u) and let € > 0. Then there exists
an upper semi-continuous function u : X — R that is bounded above and a
lower semi-continuous function v : X — R that is bounded below such that

u< f<w, /(v—u)d,u<€. (6.40)
be

Hint: Assume first that f > 0. Use Theorem to find a sequence of
measurable sets E; € A, not necessarily disjoint, and a sequence of real
numbers ¢; > 0 such that u(FE;) < oo for all ¢ and

f = Z CiXE;-
=1

<l-—¢

Thus -
> (B = / fdp < oo,
i=1 X

Choose a sequence of compact sets K; C X and a sequence of open sets
U; C X such that K; C E; C U; and c;u(U; \ K;) < €277 for all . Choose
n € N such that Y% ciu(E;) < /2 and define
U= ZCZ’XK“ V= ZCiXUi-

i=1 i=1
Show that [, (v —u)du < €, v is lower semi-continuous (i.e. v='((t,0))
is open for all ¢ € R), and u is upper semi-continuous (i.e. u™!((—o0, 1))
is open for all t € R).
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Exercise 6.23. Fix two real numbers a < b and prove the following.
(1) If f : [a,b] = R is everywhere differentiable then f": [a,b] — R is Borel
measurable.

(i) If f : [a,b] — R is everywhere differentiable and fab|f’(t)| dt < oo then f
15 absolutely continuous.

Hint: Fix a constant ¢ > 0. By the Vitali-Carathéodory Theorem in Exer-
cise there is a lower semi-continuous function g : [a,b] — R such that

b b
g> f, /g(t)dt</ f(t)dt +e.

For 1 > 0 define the function F; : [a,b] = R by

Fy(a) = / "y di — f(x) + f(a) + nlz — a)

for a < x <b. Consider a point a < x < b. Since g(x) > f'(z) and g is lower
semi-continuous, find a number ¢, > 0 such that

f{t) — f(x)

; < fl(zx)+n forz<t<z+0d,.
—x

g9(t) > f'(x),
Deduce that
F,(t) > F,(z) for v <t <z +0,.

Since F,(a) = 0 there exists a maximal element = € [a, b] such that F,(z)
If z < b it follows from the previous discussion that F,(t) > 0 for x < ¢
In either case F,(b) > 0 and hence

= 0.
<.
b b
f0)- £ < [ g+ nb-a) < [ Fydesesnb-a)
Since this holds for all » > 0 and all € > 0 it follows that
b
)~ fla) < [ e

Replace f by —f to obtain the equation f(b) — f(a) = f: f'(t)dt. Now
deduce that

f(2) — fla) = / " Py de

for all x € [a, b].
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Example 6.24. (i) The Cantor function is the unique monotone function
f:]0,1] — [0, 1] that satisfies

K3 (2
rs)-%5
i=1 i=1
for all sequences a; € {0,1}. It is continuous and nonconstant and its deriva-
tive exists and vanishes on the complement of the standard Cantor set

o0 n n

a; a; 1

C .= 2 —.2 — 4+ —.

AU pysey st
n=1 aié{O,l} =1 =1

This Cantor set has Lebesgue measure zero. Hence f is almost everywhere

differentiable and its derivative is integrable. However, f is not equal to the
integral of its derivative and therefore is not absolutely continuous.

(ii) The following construction was explained to me by Theo Buehler. Define
the homeomorphisms ¢ : [0,1] — [0,2] and h : [0,2] — [0, 1] by

g(x) = f(2) 2,  h=g"

The image ¢([0,1] \ C) is a countable union of disjoint open intervals of
total length one and hence has Lebesgue measure one. Thus its complement
K :=g(C) C [0,2] is a modified Cantor set of Lebesgue measure one. Hence,
by Theorem [6.19] g is not absolutely continuous. Moreover, by Lemma [2.15
there exists a set £ C K which is not Lebesgue measurable. However, its
image F := h(F) C [0,1] under h is a subset of the Lebesgue null set C
and hence is a Lebesgue null set. Thus F' is a Lebesgue measurable set
and £ = h™'(F) is not Lebesgue measurable. This shows that the function
h :[0,2] — [0, 1] is not measurable with respect to the Lebesgue o-algebras on
both domain and target (i.e. it is not Lebesgue-Lebesgue measurable).

(iii) Let I,J C R be intervals. Then it follows from Lemma and
Theorem that every Lebesgue-Lebesgue measurable homeomorphism
h : I — J has an absolutely continuous inverse.

(iv) Let A : [0,2] — [0,1] and F' C C' C [0,1] be as in part (ii). Then the
characteristic function xr : R — R is Lebesgue measurable and h : [0,2] — R
is continuous. However, the composition xz o h : [0,2] — R is not Lebesgue
measurable because the set (xz o h)7'(1) = E is not Lebesgue measurable.
(v) By contrast, if 7, J C R are intervals, f : J — R is Lebesgue measurable,
and h: I — Jis a O! diffeomorphism, then f o h: I — R is again Lebesgue
measurable by Theorem [2.17]



Chapter 7

Product Measures

The purpose of this chapter is to study products of two measurable spaces
(Section, introduce the product measure (Section, and prove Fubini’s
Theorem (Section . The archetypal example is the Lebesgue measure on
RF = R* x R’ it is the completion of the product measure associated to
the Lebesgue measures on R¥ and R? (Section . Applications include the
convolution (Section , Marcinkiewicz interpolation (Section, and the
Calderén—Zygmund inequality (Section [7.7).

7.1 The Product o-Algebra

Assume throughout that (X,.A) and (Y, B) are measurable spaces.

Definition 7.1. The product o-algebra of A and B is defined as the small-
est o-algebra on the product space X XY :={(x,y) |z € X, y € Y} that con-
tains all subsets of the form A x B, where A € A and B € B. It will be
denoted by A® B C 2X*Y,

Lemma 7.2. Let E € A@B and let f : X xY — R be an (A®B)-measurable
function. Then the following holds.

(i) For every x € X the function f,: Y — R, defined by f.(y) := f(z,y) for
y €Y, is B-measurable and

E,:={yeY|(z,y) € E} € B. (7.1)

(ii) For every y € Y the function f¥ : X — R, defined by f¥(x) := f(x,y)
for x € X, is A-measurable and

EY:={z e X|(z,y) € E} € A. (7.2)

209
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Proof. Define Q C 2% by
Q:={FCXxY|E,eBforallze X}.

We prove that €2 is a og-algebra. To see this, note first that X x Y € Q.
Second, if £ € Q2 then E, € B for all x € X, hence

(B ={y €Y |[(x,y) ¢ B} = (E;)°€B

for all € X, and hence E¢ € ). Third, if E; € ) is a sequence and
E ==, E;, then E, = |J;2,(E;), € B for all z € X, and hence E € Q.
This shows that €2 is a g-algebra. Since A x B € () for all A € A and all
B € B it follows that A ® B C Q. This proves for all x € X.

Now fix an element z € X. If V C R is open then F := f~1(V) € A® B
and hence (f,)"'(V) = E, € B by (7.1). Thus f, is B-measurable. This
proves (i). The proof of (ii) is analogous and this proves Lemma [7.2] O

Definition 7.3. Let Z be a set. A collection of subsets M C 27 is called a
monotone class if it satisfies the following two axioms

(a) If A; € M fori e N such that A; C Ay for all i then J;=; A; € M.
(b) If B; € M fori € N such that B; D By for all i then (2, B; € M.

Definition 7.4. A subset Q C X XY is called elementary if it is the union

of finitely many pairwise disjoint subsets of the form A x B with A € A and
BeB.

The next lemma is a useful characterization of the product o-algebra.

Lemma 7.5. The product o-algebra A @ B is the smallest monotone class
in X XY that contains all elementary subsets.

Proof. Let & C 2%*Y denote the collection of all elementary subsets and
define M C 2X*Y as the smallest monotone class that contains €. This is
well defined because the intersection of any collection of monotone classes is
again a monotone class. Since every o-algebra is a monotone class and every
elementary set is an element of A ® B it follows that

MCARB.

Since £ C M by definition, the converse inclusion follows once we know
that M is a o-algebra. We prove this in seven steps.
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Step 1. For every set P C X x Y the collection
QP)={QCXxY|P\Q,Q\P,PUQ e M}

s a monotone class.

This follows immediately from the definition of monotone class.

Step 2. Let P,QQ C X x Y. Then Q € Q(P) if and only if P € Q(Q).
This follows immediately from the definition of Q(P) in Step 1.

Step 3. If P,Q € £ then PNQ,P\Q,PUQ €E&.

For the intersection this follows from the fact that
(A1 X B1) N (A X By) = (A1 N Ay) x (B1N By).
For the complement it follows from the fact that
(A1 x By) \ (A x By) = ((A1\ A2) x By) U ((A1 N As) X (By\ By)).

For the union this follows from the fact that PUQ = (P \ Q) U Q.
Step 4. If P € € then M C Q(P).

Let P € & Then P\ Q,Q\P,PUQ € £ C M for all Q € £ by Step 3.
Hence Q) € Q(P) for all Q) € £ by definition of 2(P) in Step 1. Thus we have
proved that & C Q(P). Since (P) is a monotone class by Step 1 it follows
that M C Q(P). This proves Step 4.

Step 5. If P € M then M C Q(P).

Fix a set P € M. Then P € Q(Q) for all @ € £ by Step 4. Hence @ € Q(P)
for all @ € £ by Step 2. Thus & C Q(P) and hence it follows from Step 1
that M C Q(P). This proves Step 5.

Step 6. If P,Q € M then P\ Q,PUQ@ € M.

If P,Q € M then Q € M C Q(P) by Step 5 and hence P\ Q,PUQ € M
by the definition of Q(P) in Step 1.

Step 7. M is a o-algebra.

By definition X x Y € EC M. If P € M then P° = (X xY)\ P € M by
Step 6. If P, € M for i € N then Q,, :=J_, P, € M for all n € N by Step 6
and hence 2, P = U, @ € M because M is a monotone class. This
proves Step 7 and Lemma [7.5] O
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Lemma 7.6. Let (X,Ux) and (Y,Uy) be topological spaces, let Uxyy be
the product topology on X X Y (see Appendix , and let By, By, Bxxy be
the associated Borel o-algebras. Then

Bx @ By C Bxxy. (73)
If (X,Ux) is a second countable locally compact Hausdorff space then
Bx ® By = Bxxy. (7.4)

Proof. The projections 7x : X XY — X and 7y : X XY — Y are continuous
and hence Borel measurable by Theorem m Thus 7' (A) = AXY € Bxxy
for all A € By and 7' (B) = X x B € Byyy for all B € By. Hence
A x B € Bxyy for all A € By and all B € By, and this implies (7.3)).

Now assume (X,Ux) is a second countable locally compact Hausdorff
space and choose a countable basis {U; | i € N} of Uy such that U, is compact
for all 7 € N. Fix an open set W € Ux«y and, for 7 € N, define

Vi={yeY|(z,y) e Wiorallz € U,}.

We prove that V; is open. Let yo € V;. Then (z,y0) € W for all z € U,.
Hence, for every x € U, there exist open sets U(x) € Ux and V(x) € Uy
such that (z,y0) € U(x) x V(x) C W. Since U; is compact there are finitely
many elements z,...,7, € U; such that U; C U(x;)U---UU(zy). Define
V:=V(z;)N---NV(xs). Then V is open and U; x V C W,soyo € V C V;.

This shows that V; is open for all : € N. Next we prove that

W= G(Ui % Vi). (7.5)

1=1

Let (xg,y0) € W. Then there exist open sets U € Uy and V € Uy such
that (zg,y0) € U x V. .C W. Since (X,Ux) is a locally compact Hausdorff
space, Lemma asserts that there exists an open set U’ C X such that
xg €U C U’ C U. Since the sets U; form a basis of the topology, there
exists an integer i € N such that zq € U; C U’ and hence o € U; C U’ C U.
Thus U; x {yo} CU x V C W, hence yy € V;, and so (w9, y0) € U; x V; C W.
Since the element (¢, y9) € W was chosen arbitrarily, this proves . Thus
we have proved that Uyyy C Bx ® By and this implies Bxxy C Bx ® By.

Hence ([7.4]) follows from ([7.3). This proves Lemma ]
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Lemma 7.7. Let (X,.A) be a measurable space such that the cardinality of
X is greater than that of 2Y. Then the diagonal A := {(x,z) |z € X} is not
an element of A® A.

Proof. The proof has three steps.

Step 1. Let Y be a set. For & C 2Y denote by o(£) C 2¥ the smallest
o-algebra containing E. If D € o(&) then there exists a sequence E; € E for
i € N such that D € o({E;|i € N}).

The union of the sets o(E’) over all countable subsets £ C & is a o-algebra
that contains £ and is contained in ¢(&). Hence it is equal to o(€).

Step 2. Let Y be a set, let £ C 2Y, and let D € o(E). Then there is a
sequence E; € € and a set T C 2V such that D = ez (Micr Ei N Nienu EY).

By Step 1 there exists a sequence E; € £ such that D € o({E; |i € N}). For
I C N define Ey == (;c; E; N (;enyy Ef- These sets form a partition of Y.

Hence the collection F := {{J;.; Er|Z C 2V} is a o-algebra on Y. Since
E; € F for each i € N it follows that D € F. This proves Step 2.

Step 3. A ¢ A® A.

Let £ C 28X be the collection of all sets of the form A x B with A, B € A.
Let D € A® A. By Step 2 there are sequences A;, B; € A and a set Z C 2N
such that D = (J;o; Er, where Ep = (,c;(A; X B;) N Nien s (Ai X B;)°).
Thus E[ = chN\IA[J X B[J, where A[J = miGIAi N ﬂjEJ(X \ A]) and
Bry = Nic; Bi 0 Njem\run (X \ Bj). If D C A then, for all I and J, we
have A;; X Bry C A and so A;; X By is either empty or a singleton. Thus
the cardinality of D is at most the cardinality of the set of pairs of disjoint
subsets of N, which is equal to the cardinality of 2V. Since the cardinality of
the diagonal is bigger than that of 2V it follows that A ¢ A ® A as claimed.
This proves Lemma O

Example 7.8. Let X be an uncountable set, of cardinality greater than
that of 2%, and equipped with the discrete topology so that Bx = Uy = 2.
Then A is an open subset of X x X with respect to the product topology
(which is also discrete because points are open). Hence A € By, xy = 25>,
However, A ¢ Bx ® Bx by Lemma Thus the product By ® Bx of the
Borel g-algebras is not the Borel o-algebra of the product. In other words,
the inclusion in Lemma is strict in this example. Note also that
the distance function d : X x X — R defined by d(z,y) := 1 for x # y and
d(x,z) := 0 is continuous with respect to the product topology but is not
measurable with respect to the product of the Borel o-algebras.



214 CHAPTER 7. PRODUCT MEASURES

7.2 The Product Measure

The definition of the product measure on the product o-algebra is based
on the following theorem. For a measure space (X, A, 1) and a measurable
function ¢ : X — [0, 00] we use the notation [, ¢(z)du(x) :== [, ¢dp.

Theorem 7.9. Let (X, A, n) and (Y, B,v) be o-finite measure spaces and let
Q € A® B. Then the functions

X = [0,00] s x = v(Qy), Y = [0,00] : y — u(QY) (7.6)
are measurable and
[ v@oduta) = [ w@) vty (7.7)

Definition 7.10. Let (X, A, n) and (Y, B,v) be o-finite measure spaces. The
product measure of  and v is the map p@v : AR B — [0, 00| defined by

1@ = [ Q) = [ w@)dt) (19

X Y

forQ € ARB. That pn®v is o-additive, and hence is a measure, follows from
Theorem|[1.58 and the fact that v(Qy) = >_i2  v((Qi)s) for every sequence of

pairwise disjoint sets QQ; € A® B. The product measure satisfies

(1@ v)(A x B) = u(A) - v(B) (7.9)
for A€ A and B € B and hence is o-finite.
Proof of Theorem[7.9. Define

. the functions (7.6 are measurable
2:= {Q €cA®B and satisfy equation ((7.7)
We prove in five steps that Q = A ® B.
Step 1. If A€ A and B € B then Q := A x B € ().

By assumption

Q. = B, ifxe A, Qv = A, ifyeB,
10, ifxé A 10, ifyé B.
Define the function ¢ : X — [0, 00] by ¢(z) := v(Q.) = v(B)xa(z) for x € X

and the function ¢ : Y — [0, 00] by ¢(y) := u(QY) = u(A)xs(y) for y € Y.
Then ¢, are measurable and [y ¢ du = p(A)v(B) = [, ¢ dv. Thus Q € Q.



7.2. THE PRODUCT MEASURE 215

Step 2. If Q1,Q1 € Q and Q1 N Qy =0 then Q := QU Qs € Q.
Define

¢i(z) == v((Qi)a), ¢(z) = v(Qq),

Vily) = v((Q)),  (y) =v(Q")
forre X,yeYandi=1,2. Then ¢ = ¢+ ¢, and 1 = 1)1 + 1. Moreover,

A@szmw

for i = 1,2 because Q; € Q. Hence [, ¢du = [, 1 dv and so Q € Q.
Step 3. If Q; € Q fori € N and Q; C Qi11 for all i then Q :=J;2, Q; € L.
Define ¢;, ¢ : X — [0, 00] and ¥;,% : Y — [0, 00] by ([7.10]) for i € N. Since

o0 o0

Q=J@), @ ={J@)

=1 =1

and (Q;), € B and (Q;)Y € A for all i it follows from Theorem [L.2§] (iv) that
H(x) = v(Q.) = lm ((Q).) = lim 6,(x)  Torall z € X,
U(y) = v(@") = lm v((Q)) = lim vi(y)  forall y € V.

By the Lebesgue Monotone Convergence Theorem this implies

[ odu=tm [ oidu=tim [ vidu= [ v
X 71— 00 X 71— 00 Y Y

Thus @ € 2 and this proves Step 3.

Step 4. Let A € A and B € B such that u(A) < oo and v(B) < co. If
Qi € Q fori e N such that Ax BD Q1D Qs D - then Q :=[ )=, Qi € Q.
Let ¢;, ¢, 1,1 be as in the proof of Step 3. Since (Q;), C B and v(B) < oo
it follows from part (v) of Theorem that ¢; converges pointwise to ¢.
Moreover, ¢; < v(B)xa for all i and the function v(B)ya : X — [0,00) is
integrable because p(A) < oo and v(B) < oo. Hence it follows from the
Lebesgue Dominated Convergence Theorem [1.45] that

/‘¢du—1mn/'@du

The same argument shows that [, ¢ dy = lim;,o [, ¥; du. Since Q; € § for
all 7, this implies [, ¢du = [, ¢ dp and hence Q € Q. This proves Step 4.

(7.10)
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Step 5. Q= A® B.

Since (X, A, n) and (Y, B, v) are o-finite, there exist sequences of measurable
sets X,, € A and Y,, € B such that

X, C Xpi1, Y, C Y1, w(X,) < oo, v(Y,) < oo
foralln € Nand X =2, X,, and Y = |J;7, V,. Define
M:={QeARB|QN (X, xY,) €QforallneN}.

Then M is a monotone class by Steps 3 an 4, £ C M by Steps 1 and 2, and
M C A®B by definition. Hence it follows from Lemmal7.5 that M = A® B.
In other words @ N (X, NY,) € Q for all Q € A® B. By Step 3 this implies

Q=J@nX,xY,))eq forallQec AxB.
n=1

Thus A B C Q2 C A® B and so ) = A® B as claimed. This proves Step 5
and Theorem [7.9 O

Examples and exercises

Example 7.11. Let X =Y = [0, 1], let A C 2% be the o-algebra of Lebesgue
measurable sets, let B := 2¥ let u : A — [0,1] be the Lebesgue measure,
and let v : B — [0, 00| be the counting measure. Consider the diagonal

A::{(:c,a:)|0§a:§1}:ﬁ0{i_l,%reA@)B.

n

n=11i=1
Its characteristic function f := ya : X XY — R is given by

1, ifa=y,

Hence
W) = [ flag)dut@) =0 o<y
X
v(A,) = / flz,y)dv(y) =1 for 0 <z <1,
Y

and so [, p(AY)dv(y) =0 # 1= [, u(A;) du(z). Thus the hypothesis that
(X, A, ) and (Y, B, v) are o-finite cannot be removed in Theorem [7.9
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Example 7.12. Let X :=Y :=[0,1], let A = B C 2% be the o-algebra of
Lebesgue measurable sets, and let © = v be the Lebesgue measure.

Claim 1. Assume the continuum hypothesis. Then there is a set Q C [0,1]?
such that [0,1] \ Q. is countable for all x and QY is countable for all y.

Let @ be as in Claim 1 and define f := xg : [0,1]* — R. Then
M(Qy):/ f(z,y)dp(r) =0 for0 <y <1,
X

1Qi) = [ fepdvt) =1 oro<est,

and hence
[ @ty =0£1= [ 5(Q.)duta)
Y X

The sets (), and QY are all measurable and the integrals are finite, but the
set @) is not A ® B-measurable. This shows that the hypothesis Q € A® B
in Theorem cannot be replaced by the weaker hypothesis that sets Q,
and )Y are all measurable, even when the integrals are finite. It also shows
that Lemma/[7.2] does not have a converse. Namely, f, and fY are measurable
for all  and y, but f is not A ® B-measurable.

Claim 2. Assume the continuum hypothesis. Then there exists a bijection
j 10,1 = W with values in a well ordered set (W, <) such that the set
{w e W |w < z} is countable for all z € W.

Claim 2 implies Claim 1. Let j be as in Claim 2 and define

Q= {(z,y) € [0,1] | j(x) < j(y)}.
Then the set Q¥ = {x € [0,1]]j(z) < j(y)} is countable for all y € [0, 1] and
the set [0,1] \ Q. = {y € [0,1]|j(y) < j(x)} is countable for all € [0, 1].

Proof of Claim 2. By Zorn’s Lemma every set admits a well ordering.
Choose any well ordering < on A := [0, 1] and define

B:={be A| the set {a € A|a < b} is uncountable} .

If B =10 choose W := A =[0,1] and j = id. If B # () then, by the well
ordering axiom, B contains a smallest element by. Since by € B, the set
W :=B\A={weA|w <by} is uncountable. Since W N B = () the set
{w e W|w < z} is countable for all z € W. Since W is an uncountable

subset of [0, 1], the continuum hypothesis asserts that there exists a bijection
j :10,1] — W. This proves Claim 2.
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Example 7.13. Let X and Y be countable sets, let A = 2% and B = 2V,
and let p1 : 2% — [0, 00] and v : 2¥ — [0, 00| be the counting measures. Then
A@B=2"Y and p®@v:2X*Y —[0,00] is the counting measure.

Example 7.14. Let (X, A, n) and (Y, B,v) be probability measure spaces
so that u(X) =v(Y) =1. Then p®@v: A® B — [0,1] is also a probability
measure. A trivial example is A = {0, X} and B = {0,Y’}. In this case the

product o-algebra is A ®@ B = {(), X x Y} and the product measure is given
by (p@v)(®) =0and (u@v)(X xY)=1.

Exercise 7.15. Let (X, A, u), (Y, B,v) be o-finite measure spaces and let
6:X 5 X, Y Y
be bijections. Define the bijection ¢ x ¥ : X xY — X x Y by
(¢ x ¢)(x,y) == (#(x),¥(y))
for z € X and y € Y. Prove that
(¢ x V) (A@B) = ARYSB, (X V)u(p@V) = ¢yt @ uv.

Hint: Use Theorem to show that ¢, A ® ¥.B C (¢ X ). (A® B). See
also Exercise 2.341

Exercise 7.16. For n € N let B,, C R" be the Borel o-algebra and let
= By — [0, 00]

be the restriction of the Lebesgue measure to B,,. Let k,/ € Nand n := k+/.
Identify R¥ x R’ with R™ in the obvious manner. Then

B, ® B, = B,

by Lemma Prove that the product measure p ® py is translation invari-
ant and satisfies (ug ® ue)([0,1]") = 1. Deduce that

Mk & [y = [

Hint: Use Exercise [7.15, We return to this example in Section [7.4}
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7.3 Fubini’s Theorem

There are three versions of Fubini’s Theorem. The first concerns nonnegative
functions that are measurable with respect to the product o-algebra (Theo-
rem , the second concerns real valued functions that are integrable with
respect to the product measure (Theorem , and the third concerns real
valued functions that are integrable with respect to the completion of the
product measure (Theorem [7.23).

Theorem 7.17 (Fubini for Positive Functions). Let (X, A, u), (Y,B,v)
be o-finite measure spaces and let p®@v : AR B — [0, 00] be the product mea-
sure in Definition[7.10} Let f : X xY — [0, 00] be an AR B-measurable func-
tion. Then the function X — [0, oo] z— [, f(x,y)dv(y) is A-measurable,
the function Y — [0,00] : y = [ f(x,y) du(x) is B-measurable, and

v (o)
~ [ ([ s@mau) a)

Example 7.18. Equation ([1.20)) is equivalent to equation ([7.11) for the
counting measure on X =Y = N.

Proof of Theorem[7.17. Let f.(y) := f¥(x) := f(x,y) for (z,y) € X xY and
define the functions ¢ : X — [0,00] and ¢ : Y — [0, 00| by

0= [ fedn o= [ (7.12)

for z € X and y € Y. We prove in three steps that ¢ is A-measurable, 1 is
B-measurable, and ¢ and v satisfy equation (7.11]).

(7.11)

Step 1. The assertion holds when f: X XY — [0,00) is the characteristic
function of an A @ B-measurable set.

Let @ € A® B and f = xg. Then f, = x¢, and f¥ = xqv, and so

o(x) =v(Qs),  ¥(y) = Q")
for all x € X and all y € Y. Hence it follows from Theorem [7.9] that

Jodu= [ vau=@won@= [ raper

Here the third equation follows from the definition of the measure p ® v.
This proves Step 1.



220 CHAPTER 7. PRODUCT MEASURES

Step 2. The assertion holds when f : X XY — [0, 00) is an A®B-measurable
step-function.

This follows immediately from Step 1 and the linearity of the integral.
Step 3. The assertion holds when f: X xY — [0, 00] is A ® B-measurable.
By Theorem there exists a sequence of A ® B-measurable step-functions

Sp: X XY — [0,00)

such that s, < s, for all n € N and s,, converges pointwise to f. Define

On(z) = /st(x,y) dv(y) for x € X,

Un(x) = /Xsn($,y) du(x) fory e Y.

Then
¢n < ¢n+1> wn < wnJrl for all n € N

by part (i) of Theorem [1.35 Moreover, it follows from the Lebesgue Mono-
tone Convergence Theorem that

¢(r) = lim @o(z),  ¥(y) = lim ¢, (y)

for all x € X and all y € Y. Use the Lebesgue Monotone Convergence
Theorem [1.37| again as well as Step 2 to obtain

/¢du — lim [ éudp
X X

n—o0
= lim Spd(p®@v) = fdlp®v)
N0 JX XY XxY
= lim [ ¥,dv
n—o0 Y
= Y dv.
Y
This proves Step 3 and Theorem [7.17] O

A first application of Fubini’s Theorem is Minkowski’s inequality
for a measurable function on a product space that is p-integrable with respect
to one variable such that the resulting L? norms define an integrable function
of the other variable.
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Theorem 7.19 (Minkowski). Fiz a constant 1 < p < oco. Let (X, A, i)
and (Y, B,v) be o-finite measure spaces and let f : X xY — [0, 00] be A® B-
measurable. Then

([ ([ semaw) ) < [ ([ reram)” v

In the notation f,(y) := f¥(x) := f(x,y) Minkowski’s inequality has the form

1/p
(Auﬁmwymmﬂ < [ 1 vt (7.13)

Proof. By Lemma fz Y — [0,00] is B-measurable for all x € X and
fy : X = [0,00] is A-measurable for all y € Y. Moreover, by Theorem [7.17]
the function X — [0,00] : @ = [ fu[[}.(,, is A-measurable and the function
Y — [0,00] 1y — nyHLp(“) is B-measurable. Hence both sides of the
inequality are well defined. Theorem also shows that for p = 1
equality holds in . Hence assume 1 < p < oo and a choose 1 < ¢ < 00
such that 1/p + 1/q = 1. It suffices to assume

cim [ 1 i) < o

Define ¢ : X — [0, 00] by

() = /Yfm dv forx e X

and let g € £9(p). Then the function X xY — [0,00] : (z,y) — f(z,y)|g(x)]|
is A ® B-measurable. Hence it follows from Theorem that

AMMW=2A(Lﬂ%M%MW@>W®
- [ ([ sl ) )

S!LWWMMWMMW@

= C HgHLq(”) .

Here the third step follows from Holder’s inequality in Theorem [£.1] Since
(X, A, jt) is semi-finite by part (ii) of Lemmal4.30] it follows from Lemma[4.34]
that [|¢||;,,) < ¢. This proves Theorem [7.19 O
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Theorem 7.20 (Fubini for Integrable Functions). Let (X, A, u) and
(Y, B,v) be o-finite measure spaces, let p@v : AQB — [0,00] be the product
measure, and let [ € LY(u ® v). Define f.(y) := f¥(z) := f(z,y) forx € X
andy € Y. Then the following holds.

(i) f. € LY(v) for p-almost every x € X and the map ¢ : X — R defined by

. fy fedv, if fo € L),
o= {9 e T

15 p-1integrable.
(ii) fY € LY (i) for v-almost everyy € Y and the map v : Y — R defined by

[ fYdp, if fUe LM (w),
Y(y) = { 0, if fv ¢ ﬁl(/v‘) (7.15)

15 v-integrable.
(iii) Let ¢ € LY (n) and v € LY (v) be as in (i) and (7). Then

/ Qdp = fdljpev /wdl/ (7.16)
XxY

Proof. We prove part (i) and the first equation in (7.16). The functions

[ i=max{£f,0}: X xY — [0,00) are A® B-measurable by Theorem [1.24]

Hence the functions f* := max{+f,,0} = f&(z,:) : ¥ — [0,00) are B-
measurable by Lemma [7.2] Define ®* : X — [0, oc] by

:/f;tdu for z € X.
Y
By Theorem the functions ®* : X — [0, oo| are A-measurable and
/@idﬂz Frd(pev) g/ fldpev) <oco.  (T.17)
X XXY XxXY
Now Lemma asserts that the A-measurable set

EH:{xEX‘Aﬂﬂmn:m}:{xEXW®ﬂ@:mnm@3@%:w}

has measure pu(E) = 0. Moreover, for all x € X

reF = fo & LY (V).
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Define ¢* : X — [0, 00) by

o*(x), ifr ¢ B
+ R ) )
gb(x).—{O’ ifoe R, for z € X.

Then it follows from (7.17)) that ¢* € £!(u) and
[otan=[ rrawuen.
X XxY

Hence ¢ = ¢T — ¢~ € L1(u) and

/qudu = /X¢+du—/X¢‘du

= | rrawen - [ fduew

- fd(pev).

XxY

This proves (i) and the first equation in (7.16)). An analogous argument
proves (ii) and the second equation in ([7.16[). This proves Theorem [7.20, [

Example 7.21. Let (X, A, u) = (Y,B,v) be the Lebesgue measure space
in the unit interval [0, 1] as in Example [7.12] Let g, : [0,1] — [0,00) be a
sequence of smooth functions such that

/0 gn(x)de =1, gn(x) =0for z € [0,1]\ 27" 1, 27"]

for all n € N. Define f : [0,1]* — R by

fla,y) = i(gn(fv) - gn+1($)>gn(y)-

n=1

The sum on the right is finite for every pair (z,y) € [0,1]2. Then

/X f(z,y)dx =0, /Yf(fr,y) dy = f:(gn(fc) - gn+1(:v)> = gi1(2),

and hence

/01 (/le(x,y)dx> dy:07é1:/01 (/le(ac,y)dy) d.

Thus the hypothesis f € £'(u ® v) cannot be removed in Theorem m
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Example 7.22. This example shows that the product measure is typically
not complete. Let (X, A, u) and (Y, B,v) be two complete o-finite measure
spaces. Suppose (X, A, 1) admits a nonempty null set A € A and B # 2Y.
Choose B € 2¥ \ B. Then A x B ¢ A® B. However, A x B is contained in
the p ® v-null set A x Y and so belongs to the completion (A ® B)*.

In the first version of Fubini’s Theorem integrability was not an issue. In
the second version integrability of f, was only guaranteed for almost all x.
In the third version the function f, may not even be measurable for all z.

Theorem 7.23 (Fubini for the Completion). Let (X, A, u) and (Y, B,v)
be complete o-finite measure spaces, let (X x Y, (A ® B)*, (u ® v)*) de-
note the completion of the product space, and let f € L'((u @ v)*). Define
fe(y) == f¥(x) := f(x,y) forx € X andy € Y. Then the following holds.

(i) f. € LY(v) for p-almost every x € X and the map ¢ : X — R defined by

1
B A
15 p-integrable.
(ii) fY € LY (i) for v-almost everyy € Y and the map v : Y — R defined by
y 1

vy = { e TS (7.19)
15 v-integrable.
(iii) Let ¢ € LY (n) and v € LY (v) be as in (i) and (7). Then

/gbd,u Xfod N7 /¢du (7.20)

Proof. By part (v) of Theorem [1.55 m there exists a function g € L'(u @ v)
such that the set N := {(z,y) € X x Y| f(x,y) # g(z,y)} € (A® B)* has
measure zero, i.e. (4 ® v)*(N) = 0. By definition of the completion there
exists a set ) € A® B such that N C @ and (¢ ® v)(Q) = 0. Thus

[ @ duta) = [ w(@)dvt) <o
Hence, by Lemma [I.49]
u(E) =0, E::{$€X|V(Qx)7é0}a
v(F)=0, F:={yeY|uQ") #0}.
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Since f =g on (X xY)\ Q we have f, = g, on Y \ @, for all z € X and
f¥=g¢Yon X\ Q¥ for all y € Y. By Theorem for g € LY(pn ® v) there
are measurable sets £’ € A and F’ € B such that p(E") = v(F') = 0 and

9. € L' (V) forall z € X \ E/,
g€ LM u) forallye Y\ F.

Ifz € X\ (FUFE) then v(Q,) =0 and f, = g, on Y \ Q.. Since (Y, B,v)
is complete and g, € £!(v), every function that differs from g, on a set of
measure zero is also B-measurable and v-integrable. Hence f, € L!(v) for
all z € X \ (EUEFE'). The same argument shows that f¥ € £'(u) for all
y €Y\ (FUF'). Define the functions ¢ : X - Rand ¢ : Y — R by

() = [y fadv, forxze X\ (EUE),
10, forx e FEUE,

W(y) = Jx fYdv, foryeY \ (FUF'),

V= 0, forye FUF'.

Since ¢(x) = [, go dv for all z € X \ (E' U E') it follows from part (i) of The-
orem for g that ¢ € £'(11). The same argument, using part (ii) of Theo-
rem or g, shows that ¢ € L(v). Moreover, the three integrals in ([7.20)
for f agree with the corresponding integrals for g because

WEUE)=v(FUF)=(n®v)(@)=0.

Hence equation ((7.20]) for f follows from part (iii) of Theorem for g.
This proves Theorem [7.23] O

Example 7.24. Assume (X, A, ) is not complete. Then there exists a set
E €2X\ Aand aset N € Asuch that E C N and u(N) = 0. In this case
the set F x Y is a null set in the completion (X x Y, (A ® B)*, (u ® v)*).
Hence f := xpxy € LY((x ® v)*). However, the function fY = xg is not
measurable for every y € Y. This shows that the hypothesis that (X, .4, i)
and (Y, B, v) are complete cannot be removed in Theorem [7.23)|

Exercise 7.25. Continue the notation of Theorem and suppose that
f: X xY —[0,00] is (A ® B)*-measurable. Prove that f, is B-measurable
for p-almost all € X, that f¥ is A-measurable for v-almost all y € Y, and
that equation continues to hold. Hint: The proof of Theorem [7.23]
carries over verbatim to nonnegative measurable functions.
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We close this section with two remarks about the construction of product
measures in the non o-finite case, where the story is considerably more subtle.
These remarks are not used elsewhere in this book and can safely be ignored.

Remark 7.26. Let (X, A, 1) and (Y, B, v) be two arbitrary measure spaces.
In [4, Chapter 251] Fremlin defines the function 6 : 2X*¥ — [0, 00| by

A,€e A, B,eBforneN (7.21)
and W C U2, (A, x By) .

wm:m%iymwma>

for W C X x Y and proves that it is an outer measure. He shows that
the o-algebra C C 2¥*Y of #-measurable sets contains the product o-algebra
A ® B and calls the measure

A1 :=0|¢c:C — |0, 00]

the primitive product measure. By Carathéodory’s Theorem the
measure space (X x Y,C,\;) is complete. By definition

(A x B) = pu(A) - v(B)

for all A € A and all B € B. Fremlin then defines the complete locally
determined (CLD) product measure ), : C — [0, 0] by

EecA FeB,

Xo(W) := sup {Al(Wﬂ (E x F)) H(E) < o0, v(F) < oo } . (7.22)

He shows that (X x Y, C, \g) is a complete measure space, that A\g < A1, and
>\1<W) < 0 - )\o(W) = /\1(W)

for all W € C. (See [4, Theorem 2511].) One can also prove that a measure
A C — [0,00] satisfies A(E' x F) = u(E) - v(F) for all E € Aand F € B
with p(E) - v(F) < oo if and only if Ay < A < A;. With these definitions
Fubini’s Theorem holds for Ay whenever the factor (Y, B,v) (over which the
integral is performed first) is o-finite and the factor (X, A, u) (over which
the integral is performed second) is either strictly localizable (i.e. there
is a partition X = |J,.; X; into measurable sets with u(X;) < oo such that
a set A C X is A-measurable if and only if AN X; € Aforalli € [
and, moreover, p(A) = > ., u(ANX;) for all A € A) or is complete and
locally determined (i.e. it is semi-finite and a set A C X is A-measurable
if and only if AN E € A for all E € A with u(E) < o0). See Fremlin [4]
Theorem 252B] for details.
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If the measure spaces (X, A, u) and (Y, B,v) are both o-finite then the
measures Ao and \; agree and are equal to the completion of the product
measure ;4 ® v on A ® B (see [4, Proposition 251K]).

Remark 7.27. For topological spaces yet another approach to the product
measure is based on the Riesz Representation Theorem . Let (X,Ux)
and (Y,Uy) be two locally compact Hausdorff spaces, denote by Bx and By
their Borel o-algebras, and let px : Bx — [0,00] and uy : By — [0, 00] be
Borel measures. Define A : C.(X x Y) — R by

A= [ ([ rena)
- [ ([ teniu) a

for f € C.(X xY). That the two integrals agree for every continuous function
with compact support follows from Fubini’s Theorem for finite measure
spaces. (To see this, observe that every compact set K C X XY is contained
in the product of the compact sets Ky := {x € X | ({z} x Y) N K # (} and
Ky ={y €Y |(X x {y}) N K # (0}.) Since A is a positive linear functional,
the Riesz Representation Theorem [3.15] asserts that there exists a unique
outer regular Borel measure p; @ Bxyxy — [0,00] that is inner regular on
open sets and a unique Radon measure (g : Bxxy — [0, 00| such that

(7.23)

A(f) = fdpo = fdn

XxY XxY
for all f € C.(X xY). It turns out that in this situation the Borel o-algebra
Bxyy is contained in the o-algebra C C 2¥*Y of Remark and

Mo = >\0|Bx><Y7 M1 = Al’BXxY'

Recall from Lemma [7.6] that the product o-algebra Bx ® By agrees with the
Borel o-algebra By .y whenever one of the spaces X or Y is second countable.
If they are both second countable then so is the product space (X XY, Ux«y)

(Appendix [B)). In this case

Mo = f1 = pbx & py

is the product measure of Definition and A\g = Ay : C — [0,00] is its
completion. (See Theorem and Remark [7.26])
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7.4 Fubini and Lebesgue

For n € N denote by (R, .A,,, m,) the Lebesgue measure space on R" and by
B, C A, the Borel g-algebra on R™ with respect to the standard topology.
For k, ¢ € N we identify R** with R* x R’ in the standard manner. Since R
is second countable for all n it follows from Lemma[7.6]l and Theorem 2.1] that

Bk ® BE = BkJr@a (mk’Bk) ® (méyBe) = mk+f‘3k+é' (7'24)
(See Exercise [7.16,) Thus Theorem has the following consequence.

Theorem 7.28 (Fubini and Borel). Let k,¢ € N and n := k + (. Let
f:R™ —[0,00] be Borel measurable. Then f, := f(x,-) : R® — [0,00] and
fY = f(,y) : R¥ — [0,00] are Borel measurable for all x € R* and all
y € RY. Moreover, the functions R¥ — [0,00] : z — [o, f(x,y) dme(y) and
R — [0,00] : y > [ f(z,y) dmy(z) are Borel measurable and

[ sama= [ ([ s dn) an)

(7.25)
= [ ([ siima)) ano)
R¢ \JRK
Proof. The assertion follows directly from ([7.24]) and Theorem [7.17] O

For Lebesgue measurable functions f : R™ — [0, oo] the analogous state-
ment is considerably more subtle. In that case the function f,, respec-
tively fY, need not be Lebesgue measurable for all z, respectively all y.
However, they are Lebesgue measurable for almost all # € R¥, respectively
almost all y € R?, and the three integrals in can still be defined and
agree. The key result that one needs to prove this is that the Lebesgue
measure on R” = R¥ x R’ is the completion of the product of the Lebesgue
measures on R* and RY. Then the assertion follows from Exercise [7.25]

Theorem 7.29. Let k., € N, define n := k + £, and identify R" with the
product space RF x R in the canonical way. Denote the completion of the
product space (R¥ xR’ A, @Ap, mp@my) by (REXRE (AL @A)*, (mp@my)*).
Then A, = (Ax ® Ap)* and m,, = (my, @ my)*.

Proof. Define
C, = {[al,bl) X+ X [y, bp) [ @i, b; € R and a; < b; for i = 1,...,n}

so that C, C B,, C A, C 2%" for all n. We prove the assertion in three steps.
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Step 1. B, C Ay ® Ay and m,(B) = (my @ my)(B) for all B € B,

By Lemma we have B, = B, ® B, C A; ® Ay. It then follows from
the uniqueness of a normalized translation invariant Borel measure on R” in
Theorem [2.1| that m, |z, = (my ® my)|s,. Here is a more direct proof.

First, assume B = E = [ay,b1) X -+ X [ay, b,) € C,. Define

E = [a1,b1) X oo X [ak7bk), E" .= [ak+1,bk+1) X X [an,bn>'

Thus B/ € C, C Ay, E" € C, C Ay, andso E = E'x E" € A, ®A,. Moreover

n

mo(B) = [0 = a)) = mu(B") - mu(E") = (my @ mo) (E).

=1

Second, assume B = U C R" is open. Then there is a sequence of pairwise
disjoint sets E; € C, such that U = | J;-, E;. Hence U € A, ® A, and

[e.e]

(mx @ me)(U) =Y _(my @ my)(E;) = Z My (E;) = my(U).

i=1

Thus every open set is an element of A, ® A, and so B,, C Ay ® A,. Third,
assume B = K C R" is compact. Then there is an open set U C R" such
that K C U and m,(U) < oo. Hence the set V := U \ K is open. This
implies that K =U \V € A; ® A, and

(my @me)(K) = (my, @ me)(U) — (my @ mg)(V)
= mn(U) - mn<v)
= my(K).

Now let B C R™ be any Borel set. Then B € A, ® A, as we have seen above.
Moreover, it follows from Theorem that

ma(B) = inf ma(U) =t (i m)(U) 2 (i @ me)(B)
U is open U is open

and

mB)= Db ma(K) = b (e me)(K) < (me @ mo)(B)
K is compact K is compact

Hence m,(B) = (my ® my)(B) and this proves Step 1.
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Step 2. A, @ A, C A,.

We prove that
E e A = E xR’ c A,. (7.26)

To see this, fix a set E € Ay. Then there exist Borel sets A, B € By, such that
ACFE C Band my(B\ A) =0. Let 7 : R” x R* denote the projection onto
the first k£ coordinates. This map is continuous and hence Borel measurable
by Theorem |1.20, Thus the sets A x R = 771(A) and B x R* = 7=1(B) are
Borel sets in R™. Moreover, by Step 1
mn((B xR\ (AxRY)) = m,((B\A) xR

— (me@mo)((B\ A) x RY)

= my(B\ A) - my(R)

= 0.

Since A x R ¢ E x R ¢ B x Rf it follows that £ x Rf € A,,. This
proves ((7.26)). A similar argument shows that

FeA = RFx Fe A,.

Hence Ex F = (ExRY)N(R* x F) € A, for all E € A; and all F € A,.
Thus A, ® A, C A, and this proves Step 2.
Step 3. (Ar ® Ay)* = A, and (mp ® my)* = m,,.
Let A € A,,. Then there are Borel sets By, B € B,, such that By C A C B,
and m,,(B1\By) = 0. By Step 1, By, B € A,®A; and (mp®@my)(B1\By) = 0.
Hence A € (A, ® Ay)* and

(my, ® mg)*(A) = (mx @ my)(Bo) = my(Bo) = mn(A).
Thus we have proved that

An - (Ak X AZ)*a (mk X mf)*|¢4n = Mpy.

Since A, ® Ay, C A,, by Step 2 it follows that

mn|Ak®AZ = (mk ® mz)*|Ak®Ae = myg & my.

Now let A € (Ar ® Ay)*. Then there are sets Ag, A} € A, ® Ay such that
Ay C AC Ay and (mi ®@my) (A1 \ Ag) = 0. Hence Ay, A; € A,, by Step 2 and
mn (A1 \ Ag) = 0. Since (R", A,,, m,,) is complete it follows that A\ Ay € A,
and so A = AgU (A\ Ay) € A,. Hence A,, = (A, ® Ay)*. This proves Step 3
and Theorem [7.29 ]
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The next result specializes Theorem to the Lebesgue measure.

Theorem 7.30 (Fubini and Lebesgue). Let k,{ € N and n := k + (.
Let f:R" — R be Lebesgue integrable and, for x = (z1,...,7;) € R* and

Yy = (yh s Jyf) € RZ? deﬁne fx(y) = fy(x) = f(xb s Ty Y1, - - 7y€)' Then
there are Lebesque null sets E C RF and F C RY such that the following holds.

(i) f. € LYRY) for every x € R*\ E and the map ¢ : R¥ — R defined by

k
é(z) = { bﬁv Jo dmy, jﬁg:i 5 H; \ B (7.27)

i1s Lebesque integrable.
(ii) f¥ € LYRF) for every y € R\ F and the map 1 : R® — R defined by

l
otg)i= { e I7me oy RN (7.28)

15 Lebesque integrable.

(iii) Let ¢ € LY(R*) and ¢ € LY(RY) be as in (i) and (ii). Then

N ¢dmy, = fdm, = y WY dmy. (7.29)

R"

Proof. This follows directly from Theorem and Theorem [7.29, ]

7.5 Convolution

An application of Fubini’s Theorem is the convolution product on the space
of Lebesgue integrable functions on Euclidean space. Fix an integer n € N
and let (R",.A,m) be the Lebesgue measure space. The convolution of two
Lebesgue integrable functions f, g € £L(R") is defined by

(fxg)(z):= flx—1)g(y) dm(y) for almost all x € R".
Rn

Here the function R” — R : y — f(x — y)g(y) is Lebesgue integrable for al-
most every x € R™ and the resulting almost everywhere defined function f * g
is again Lebesgue integrable. This is the content of Theorem [7.33, The con-
volution descends to a bilinear map * : L'(R") x L'(R") — L'(R"). This
map is associative and endows L'(R™) with the structure of a Banach alge-
bra. Throughout we use the notation f ~ g for two Lebesgue measurable
functions f,g : R® — R to mean that they agree almost everywhere with
respect to the Lebesgue measure.
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Definition 7.31. Let f,g: R"™ — R be Lebesque measurable and define
E(f,g9) = {x e R" } . (7.30)

The convolution of f and g is the function fx g: R" — R defined by
(f xg)(x) = . fl@=y)g(y)dm(y)  forz eR"\ E(f,g)  (7.31)

and by (f * g)(z) :==0 for x € E(f,g).

The next theorem shows that the convolution is very robust in that f *x g
is always Borel measurable and depends only on the equivalence classes of f
and g under equality almost everywhere.

Theorem 7.32. Let f,g,h, f,¢ : R" — R be Lebesque measurable. Then
the following holds.
(1) The function y — f(x —y)g(y) is Lebesgue measurable for all z € R™.
(ii) If f' ~ f and g ~ g then E(f',g") = E(f,g) and [+ g = f*g.
(iii) E(f,g) is a Borel set and f * g is Borel measurable.
(iv) E(g,f) = E(f,g9) and g* f = f *g.
(V) If m(E(f,9)) = m(E(g, h)) = 0 then
E = E(|f],1g] = |n]) = E([f]* |gl, |hl)

and fx(gxh)=(fxg)xh on R"\ E.

An example with n = 1, where E(f,g*h) = E(f *g,h) =0 and E =R
in part (v) of Theorem is discussed in Exercise below.
Proof of Theorem[7.33. We prove (i). For z € R™ define f, : R* — R
and &, : R" — R by fu(y) == f(z — ) and ¢,(y) = & = y. Then o,
is a diffeomorphism and |det(d¢,)] = 1. Hence Theorem asserts that

fz = f o ¢, is Lebesgue measurable for all x € R™ and this proves (i).
We prove (ii). By assumption the sets

A={yeR"[fly) # (v}, B={yeR"|gly)#d W)}

are Lebesgue null sets. Hence so are the sets

Cp =g (A)UB={y eR"| f(x —y) # f(x —y) or g(y) # 9'(v)}

for all z € R™. Hence the functions f,g and f.¢" agree on the complement of
a Lebesgue null set for every x € R™. Hence they are either both integrable or
both not integrable and when they are their integrals agree. This proves (ii).

the function R" - R :y — f(zx —y)g(y)
1s not Lebesque integrable
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We prove (iii). By (ii) and Theorem it suffices to assume that f and
g are Borel measurable. Now define F, G : R*™ — R and ¢ : R*" — R?*" by
Fz,y) = f(z —y)g(y),
G(z,y) == f(z)g(y),
¢(r,y) = (z —y,y)

for x,y € R™. Then G is Borel measurable and ¢ is a diffeomorphism. Hence
¢ preserves the Borel o-algebra and this implies that

F=Gog¢
is Borel measurable. Hence the function
R" = [0,00] iz = [ [F(z,y)|dm(y),
Rn

is Borel measurable by Fubini’s Theorem [7.28| Thus the set E(f,g) where
this function takes on the value oo is a Borel set. Moreover, the functions

F* := max{+F,0}
are Borel measurable and so are the functions F* : R2" — [0, 00) defined by

FE(z,y), ifx e R"\ E(f,qg),

fne= o 2n
F*(z,vy) .—{ 0 if € B(f.g). for (z,y) € R™".

Since

(Fe)a) = [ Frapdm) ~ [ Fy)am(y

n

for all x € R" it follows from Theorem that f * ¢ is Borel measurable.
This proves (iii).
We prove (iv). Since g, f = (f.g) © ¢, it follows from Theorem that

E(g, f)={z €R"|g.f € L'(R")} = E(f.9g)

and

(f*g)(x) = fmgdm: (fmg)o¢mdm: ngdm: (g*f)(x)

R" R R

for all z € R™\ E(f,g). This proves (iv).
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We prove (v). By (ii) and Theorem [L.55] it suffices to assume that f, g,
and h are Borel measurable. Let x € R™ and define F, : R*® — R by
Fo(y, 2) := f(2)g(z —y — 2)h(y).
Thus F), is the composition of the maps R?" — R3" : (y,2) — (2,2 —y—2,¥)
and R* — R : (&,1,¢) — f(£)g(n)h(¢). Since the first map is continuous

and the second is Borel measurable it follows that F), is Borel measurable.
We claim that

v € E(|f],lg] *|n]) < [Fe| =00 <= e E(|f| gl [hl). (7.32)
R2n

It follows from Theorem [7.28] that
[ iddne, = [ ([ 52a0m) dn)
RQn n R"

This integral is finite if and only if F, € £!(R*"). Moreover,

|Faly, 2)[dmly) = [FG)] | l9(w =y = 2)l[h(y)] dm(y)

= [F@)(gl = [h))(x - 2)
for z € R"\ (x — E(g, h)). Since E(g, h) is a Lebesgue null set it follows that
1%l 1 gemy = /Rn!f(Z)!(\g\ *|h[)(x = 2) dm(2).

The integral on the right is infinite if and only if x € E(|f|, |g| * |h|). This
proves the first equivalence in . The proof of the second equivalence is
analogous with y and z interchanged.

Now let z € R"\ E. Then F, € LY(R*) and z € R™\ E(f,g * h).
Moreover, for z € R", the function R* — R : y — F,(y, 2z) is integrable if
and only x — z ¢ E(g,h) and in that case its integral is equal to

/n Feo(y, z) dm(y) = f(2) / 9(x —y = 2)h(y) dm(y) = f(z)(g * h)(z — 2).
Since E(g, h) is a Lebesgue null set, it follows from Theorem that
[ Pedma = [ p@)ax i) =2 (=) = (7 < (= )(a)

The last equation holds because = ¢ E(f,g* h). A similar argument with y
and z interchanged shows that [,,, Fi, dma, = ((f*g)*h)(x) for all z € R"\ E.
This proves (v) and Theorem [7.32] O

R”
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Theorem 7.33. Let 1 < p,q,r < oo such that 1/p+1/q =1+ 1/r and let
f e LP(R") and g € LYR™). Then m(E(f,g)) =0 and

L+ gll, < WAL, gl - (7.33)
Thus f* g € L™(R™). The estimate (7.33) is called Young’s inequality.
Proof. Define the function h : R™ — [0, co] by

h(z) == Wum—ymwnmmw for z € R".

Then |f x g| < h and E(f,g) = {x € R"|h(z) = co}. Hence it suffices to
prove that [|h[[, <[/ ]|, [|g]l,- Forr = oo this follows from Hélder’s inequality.
So assume r < oo. Then 1 < p,q < co. Define

/\::1_]_?:])_1_?’ q':zg.
r q A

Then0 <A< land1l/q+1/¢ =1. Also A=0ifandonlyifg=1. If A >0
then Holder’s inequality in Theorem [4.1] shows that

) = [ 1P gl dm < 17

where f.(y) := f(x —y). Since A\¢’ = p this implies

a/d’
oy < ([ AP dm) [ g gl
Rn R'ﬂ
=17 [ 176 =) g dn(y)

for all x+ € R™. This continues to hold for A = 0. Now it follows from
Minkowski’s inequality in Theorem with the exponent s := r/q > 1 that

a/r 1/s
it = ([ o)~ ([ wean)

< 1 ([, (-1 anis) ) dmm)l/s

1/s
< W [ ([ 1= g dnta) ) o)

A 1—X
= ANV g2

Here the last equation follows from the fact that (1 — X)gs = (1 — \)r = p.
This proves Theorem [7.33] O

| fol gl

q q’

(7.34)



236 CHAPTER 7. PRODUCT MEASURES

It follows from Theorem and part (ii) of Theorem that the
convolution descends to a map

LYR™) x L'(R™) — L*(R"™) : (f,9) = f *g. (7.35)

This map is bilinear by Theorem m, it is associative by part (v) of Theo-
rem [7.32 and satisfies ||f * g||; < ||f]]; lg]l; by Young’s inequality in Theo-
rem [7.33] Hence L'(R") is a Banach algebra. By part (iv) of Theorem m
the Banach algebra L'(R™) is commutative and by Theorem withg =1
and r = p it acts on LP(R™). (A Banach algebra is a Banach space (X, ||-||)
equipped with an associative bilinear map X x X — X : (x,y) — xy that
satisfies the inequality ||zy| < ||z|| ||ly| for all z,y € X.)

Definition 7.34. Fiz a constant 1 < p < oo. A Lebesgue measurable func-
tion f : R* — R is called locally p-integrable if [, |f|Pdm < oo for ev-
ery compact set K C R". [t is called locally integrable if it is locally
p-integrable for p = 1.

Theorem [7.33] carries over to locally integrable functions as follows. If
1/p+1/qg=1+1/r, f islocally p-integrable, and g € L4(R™) has compact
support, then E(f, g) is a Lebesgue null set and f*g is locally r-integrable. To
see this, let K C R™ be any compact set and choose a compactly supported
smooth function § such that 5|x = 1. Then Sf € LP(R™) and (5 f)*g agrees
with f % g on the set {z € R" |z — supp(g) C K}. In the following theorem
C°(R™) denotes the space of compactly supported smooth functions on R™.

Theorem 7.35. Let 1 < p < oo and 1 < ¢ < oo such that 1/p+1/q = 1.
(i) If f : R — R is locally p-integrable then

ti [ [ +€) = @) dm(z) =0

for every bounded Lebesgue measurable subset B C R™. If f € LP(R™) this
continues to hold for B = R".

(ii) If f € LP(R™) and g € LI(R™) then f * g is uniformly continuous. If f
is locally p-integrable and g € LI9(R™) has compact support (or if f € LP(R™)
has compact support and g is locally q-integrable) then f * g is continuous.
(iii) If f : R® — R is locally integrable and g € C{°(R™) then f * g is smooth
and 0“(f x g) = f = 0%g for every multi-index c.

(iv) C°(R™) is dense in LP(R™) for 1 < p < oc.
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Proof. We prove (i). Assume first that f € £P(R") and fix a constant € > 0.
By Theorem there is a function g € C.(R") such that || f — g||, < gt/r /3,
Define K :={x +¢|x,& € R" |z € supp(g), |{] < 1}. Since ¢ is uniformly
continuous there exists a constant 0 < ¢ < 1 such that, for all £ € R”,

e 1/p
<t = swle+9) -0l < ()

z€R™

Take ¢ € R™ such that || < 4. Then
1/p
([ 1@ +0 - rop dnta)

1/p
sﬂu—gm+( |ﬂx+®—gwwﬂm@0

2e1/P
<
-3

R”

1/p
() sup ot +) 0P ) <
TER™

This proves (i) for f € L£P(R™). To prove the result in general choose a
compact set K C R" such that B;(z) C K for all x € B and multiply f by a
smooth compactly supported cutoff function to obtain a function f’ € LP(R™)
that agrees with f on K. Then (i) holds for f’ and hence also for f.

We prove (ii). Assume first that f € £P(R") and g € £L9(R") and fix a
constant € > 0. By part (i) there exists a 6 > 0 such that, for all £ € R™,

f<s = va+a—fwwmmw<(@%)

Fix two elements z,¢ € R™ such that || < § and denote f,(y) := f(z —y).
Then, by Hoélder’s inequality in Theorem [4.1]

720+ = (o)l = |[ (s = 2gdo] < fuse = £, o,

1/p
_ <RJﬂy+O—f@Wﬂm@0 loll,
< E&.

This shows that f * g is uniformly continuous. If f is locally p-integrable and
g € L1(R™) has compact support continuity follows by taking the integral
over a suitable compact set. In the converse case continuity follows by taking
the Li-norm of g over a suitable compact set. This proves (ii).
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We prove (iii). Fix an index i € {1,...,n} and denote by e; € R™ the ith
unit vector. Fix an element x € R"™ and choose a compact set K C R" such
that B (y) C K whenever x—y € supp(g). Let € > 0. Since 0;g is continuous,
there is a constant 0 < § < 1 such that |0;g(y + he;) — 0ig(y)| < e/ [ |fldm
for all y € R™ and all h € R with |h| < 6. Hence the fundamental theorem
of calculus asserts that

gly + he;) — g(y) ’ €
su ) <
yeRIzL h 9(y) [ fldm

for all h € R with 0 < |h| < 6. Take h € R™ with 0 < || < 6. Then

= /nf(y) (g(ﬂhei —}yL) —9@—y) —&g(x—y)) dm(y)‘
< [ 1 AR I g ) diny) < =

By part (ii) the function 0;(f * g) = f * 0;g is continuous for i = 1,... n.
For higher derivatives the assertion follows by induction. This proves (iii).

We prove (iv). Let f € £P(R™) and choose a compactly supported smooth
function p : R™ — [0, 00) such that

supp(p) C B, / pdm = 1.

Define ps : R — R by

1 T
ps(z) = 5n <g>
for 6 > 0 and z € R™. Then

supp(ps) C Bs, / psdm =1

by Theorem [2.17] By part (iii) the function
fs=psx [ R" =R

is smooth for all 6 > 0. Now fix a constant € > 0. By part (i) there exists a
constant 0 > 0 such that, for all y € R",

ly| <é — Rn|f(a: —y) — f(2)]P dm(z) < €.
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Hence, by Minkowski’s inequality in Theorem [7.19)

=1, = (. p dm<x>)1/p

[ ([ 1=~ s@postor amta ) m(y)
1/p
< s ([ - - s@pan) <o

ly|<d

/n (flz—y) = f(x)ps(y) dm(y)

IN

If f has compact support then so does fs. If not, choose a function g € £P(R")
with compact support such that || f — g[|, < /2 and then a smooth function
h: R" — R with compact support such that ||g — hl|, < /2. This proves (iv)
and Theorem [7.35 O

The method explained in the proof of part (iv) of Theorem is called
the mollifier technique. The functions ps; can be viewed as approximate
Dirac delta functions that concentrate near the origin as ¢ tends to zero.

7.6 Marcinkiewicz Interpolation

Another interesting application of Fubini’s Theorem is Marcinkiewicz inter-
polation which provides a criterion for a linear operator on L?(z1) to induce a
linear operator on LP(u) for 1 < p < 2. Marcinkiewicz interpolation applies
to all measure spaces, although it is used here only for the Lebesgue measure
space on R™. In particular, Marcinkiewicz interpolation plays a central role
in the proof of the Calderén-Zygmund inequality in Section [7.7]

Let (X, A, i) be a measure space. For a measurable function f: X — R
define the function sy : [0,00) — [0, 00] by (6.1)), i.e.

re(t) = p(AQ f), At f) = {z e X||f(x)] > t},
for t > 0. The function x; is nonincreasing and hence Borel measurable.

Lemma 7.36. Let 1 < p < oo and let f,g: X — R be measurable. Then
Fprg(t) < Rp(t/2) + rg(t/2), (7.36)

tPry(t) /]f|pdu p/ P kp(s) ds (7.37)

for allt > 0.
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Proof. The inequality ([7.36|) was established in the proof of Lemma . We
prove ([7.37)) in four steps.

Step 1. tPks(t) < [ |fIPdp for allt > 0.

Since tPx A,y < | fIP it follows that tPry(t) = [ Px(awp die < [ | fIP dp for
all £ > 0. This proves Step 1.

Step 2. If r4(t) = 0o for some t > 0 then [ |f|P dp= o0 = [J° 7 ks(t) dt.
By Step 1, we have [,|f[?du = oco. Moreover, t*~'ks(t) = oo for t > 0
sufficiently small and hence [ "~ 'x(t) dt = oo. This proves Step 2.

Step 3. Assume (X, A, ) is o-finite and k¢(t) < oo for allt > 0. Then
equation ([7.37)) holds.
Let B C 2[%%) be the Borel o-algebra and denote by m : B — [0, 00] the

restriction of the Lebesgue measure to B. Let (X x [0,00), A® B, u® m) be
the product measure space of Definition [7.10] We prove that

Q(f) = {(a,t) € X x [0,00) [0 <t < |f(2)]} € AR B.

To see this, assume first that f is an A-measurable step-function. Then
there exist finitely many pairwise disjoint measurable sets A;,..., 4, € A
and positive real numbers a;, ..., ap such that [f| = 3¢, aixa,. In this
case Q(f) = Ur_, 4; x [0, ;) € A® B. Now consider the general case. Then
Theorem [1.26]asserts that there is a sequence of A-measurable step-functions
fi + X = [0,00) such that 0 < f; < fo < --- and f; converges pointwise
to |f]. Then Q(f;) € A® B for all i and so Q(f) = U2, Q(f;) € A® B.

Now define h : X x [0,00) — [0,00) by h(z,t) := ptP~!. This function is
A ® B-measurable and so is hxq(y). Hence, by Fubini’s Theorem [7.17]

[~ [ ( / ﬂw)'mﬂldt) du(a)
= [ ([ tawenan) duto
= [ (/] txow)ot) duta) ) amee

-/ LA, £)) d.

This proves Step 3.
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Step 4. Assume ks(t) < oo for allt > 0. Then (7.37) holds.

Define Xo := {z € X | f(z) # 0}, Ay := {A € A| A C Xo}, and 1o := pua,.
Then the measure space (X, Ao, o) is o-finite because X,, := A(1/n, f) is
a sequence of A, -measurable sets such that po(X,,) = kr(1/n) < oo for all n
and Xy = J,—, X,,. Moreover, fy := f|x, : Xo = R is Ap-measurable and
Ky = kf,. Hence it follows from Step 3 that

Jirpdn= [ 15l dna= [ wgar= [ o
X Xo 0 0

This proves Step 4 and Lemma [

Fix real numbers 1 < p < ¢. Then the inequality

a(p—1)

11, < 1A g (7.38)

in Exercise [4.44] shows that

LY(p) N L) C LP(p).

Since the intersection L'(y) N L9(u) contains (the equivalences classes of) all
characteristic functions of measurable sets with finite measure, it is dense in
LP(u) by Lemma . The following theorem was proved in 1939 by Joézef
Marcinkiewicz (a PhD student of Antoni Zygmund). To formulate the result
it will be convenient to slightly abuse notation and use the same letter f to
denote an element of £P(4) and its equivalence class in LP(p).

Theorem 7.37 (Marcinkiewicz). Let ¢ > 1 and let T : L9(pn) — L9(p) be
a linear operator. Suppose that there exist constants ¢y > 0 and c; > 0 such
that

1Tl oo <cllfllis T, el £, (7.39)
for all f € L'(u) N LY(w). Fiz a constant 1 < p < q. Then

Up g-p a1

plg—1) (=D .p(a—1)
Tl <ec,|fll, c :—2(—) el e 7.40
|| ||p p || ||p P (q p)<p . 1) 1 q ( )

for all f € L*(u) N LI(p). Thus the restriction of T to L*(p) N L9(u) extends
(uniquely) to a bounded linear operator from LP(u) to itself for 1 < p < q.
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Proof. Let ¢ > 0 and let f € £'(u) N L9 (w). For ¢t > 0 define
_ ) fla), i [f(z)] >, [0, if|f(x)] > e,
roy={ ) ae)={ Gy

if | f(z)| < e, if | f(z)] < et.
Then
| A(s, f), ifs>ct, [0, if s > ct,
Als, fr) = { Alet, f), if s < e, Als, g1) = { A(s, f)\ Alet, f), if s < ct,
| kg(s), ifs>ct, |0, if s > ct,
fig(s) = { ke(ct), if s < ct, fig () = { ki(s) — kg(et), if s < ct.

By Lemma [7.36| and Fubini’s Theorem this implies

/Omﬁ>—2||ﬁ|y1 dt:/oootp—2 (/OOO 1 (5) ds) dt
:/Oootp—2 (cmf(ct)Jr/oo Kks(s)ds ) dt

clp/ P~ 1/<ef dt—i—/ tp thﬂf ds
0 0 0

A / i (1)l + +(s) ds
0 0
cl—p
p/ P k(1) dt
p—1

/ = | g |2 dt = / pma—1 (/ qs” kg, (5) ds) dt
0 0 0
00 ct
= [T ([ asi et = wplenyas) an
—q/ / N dt s Ry (s )ds—cq/ Py (ct) dt
p—1,-q—p
:q/ i ¢ f( )ds—cq p/ tr 1/€f(t)dt
0 qa—p 0

q—p Sy
= ¢ p/ tp_llif(t) dt
q—PJo

Cg-plJx
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Moreover, f = f; 4+ g, for all ¢ > 0. Hence, by Lemma [7.36{ and ([7.39)),
H“Tf(t) < KTy, (t/2) + Krg, (t/2)
2 24
< STl + 35 179l

@ T (26‘”

Hence, by Lemma and the 1dent1tles on page [242]
/ TPy = p/ Vo (1) dt
b's 0

< 2 / tHuftHl dt + p(2c,)? / 01 || g, 1 de
0

p2cictP p(2¢,)
(pl_l gLl 1117 dy

(¢— p)/(q 1) (ap— q)/ q—1)

plqg —1)2Pc c

- ezl : I
(@=p)p—1)

Here the last equation follows with the choice of ¢ := (2¢;)/(@=Y /(2¢,)/ (@1,

This proves Theorem [7.37] O

IA

lgellg -

7.7 The Calderé6n—Zygmund Inequality

The convolution product discussed in Section has many applications, no-
tably in the theory of partial differential equations. One such application is
the Calderon—Zygmund inequality which plays a central role in the regularity
theory for elliptic equations. Its proof requires many results from measure
theory, including Fubini’s Theorem, convolution, Marcinkiewicz interpola-
tion, Lebesgues’ differentiation theorem, and the dual space of LP. Denote
the standard Laplace operator on R" by

A= — 7.41
— 81’12 ( )
and, for ¢ = 1,...,n, denote the partial derivative with respect to the ith

coordinate by d; = 0/0x;. Denote the open ball of radius r > 0 centered at
the origin by B, := {x € R"||z| < r}. Call a function v : R" — R smooth
if all its partial derivatives exist and are continuous. Denote by C§°(R"™) the
space of compactly supported smooth functions on R".
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Definition 7.38. Fix an integer n > 2. The fundamental solution of
Laplace’s equation is the function K : R™\ {0} — R defined by

_J (@m)~ og(z]), ifn=2,
K(z) = { (2 —n)lw e, ifn > 2. (7.42)
Here w, denotes the area of the unit sphere S™~' C R"™ or, equivalently,
wp/n = m(By) denotes the Lebesque measure of the unit ball in R™. The
first and second partial derivatives K; = 0;K and K;; = 0,0;K of the

fundamental solution are given by

|z — na?

Kii(z) = Lo (7.43)

ZT; —NT;T;

Wy || t2’

Kl(a:) = Kl({]j) =

wn 2| Wy ||+

for 1 <i,j <n with i # j. Extend the functions K, K;, K;; to all of R" by
setting K(0) := K;(0) := K;;(0) := 0 for all i, 7.

Exercise 7.39. Prove that AK = 0. Prove that K and K; are locally
integrable while K;; is not Lebesgue integrable over any neighborhood of the
origin. Hint: Use Fubini’s Theorem in polar coordinates (Exercise [7.47]).

Exercise 7.40. Prove that m(B;) = w,/n. Prove that

/2 _2mn/? if n is even

_ _ ) e )
Wy = = " e 7.44
I'(n/2) { LEs e, i n s odd, (7.44)

Hint: Use Fubini’s Theorem to prove that [,, e~ " dm(z) = 7/2. Use polar
coordinates to express the integral in terms of w,, (Exercise [7.47]).

Theorem 7.41. Fiz an integer n > 2 and let f € C3°(R™). Then
f=KxAf (7.45)

Moreover, the function u : R™ — R, defined by

u(x) == (Kx f)(z) = [ K(z—y)f(y)dm(y) (7.46)

R

for x € R™, is smooth and satisfies
Au = f, Ou=K;x f fori=1,... n. (7.47)
The equations (7.45) and (7.47)) are called Poisson’s identities.
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Proof. The proof relies on Green’s formula

/Q(UAU — vAu)dm = /asz (u% - v%) do (7.48)

for a bounded open set €2 C R™ with smooth boundary 02 and two smooth
functions u,v : R®™ — R. The term

n

ou ou
o) = Y n(@) (o)

=1

for z € 99 denotes the outward normal derivative and v : 9Q — S™~! denotes
the outward pointing unit normal vector field on the boundary. The integral
over the boundary is understood with respect to the Borel measure ¢ induced
by the geometry of the ambient Euclidean space. We do not give a precise
definition because the boundary integral will only be needed here when the
boundary component is a sphere (see Exercise below). Equation
can be viewed as a higher-dimensional analogue of the fundamental theorem
of calculus.

Now let f € C§°(R") and choose r > 0 so large that supp(f) C B,. Fix
an element ¢ € supp(f) and a constant £ > 0 such that B.(¢) C B,. Choose

Q= B, \ B.(9), u(x) == Ke(x) == K(§ — x), vi=f.

Then 02 = 0B, U dB.(&) and the functions v, Jv/dv vanish on 0B,. More-
over, AK; = 0. Hence Green’s formula ((7.48)) asserts that

R\ B (€) oB.(c) \" OV v

Here the reversal of sign arises from the fact that the outward unit nor-
mal vector on 0B.(§) is inward pointing with respect to 2. Moreover,

v(z) = |z — &z — &) for x € OB.(€), so OK¢/Ov(z) = w,'e' ™™ by (7.43).
Also, by ,

27 log(e), if n =2,
Ke(z) = { (2- n)gi(%l:lg?—”, ifn >0 = Wv(e) for x € 0B.(€).

Hence it follows from ([7.49)) that

1
/ KeAfdm = ——— / udo — () / Afdm.  (7.50)
R™\Be (€) WneT " JoB.(9) =(©)
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The last summand is obtained from (7.48]) with u = 1, v = f, Q = B.(&).
Now take the limit ¢ — 0. Then the first term on the right in (7.50]) converges
to f(£) and the second term converges to zero. This proves (7.45)). It follows

from Theorem and equation ([7.45)) that
Au=AKx*xf)=Kx*xAf=f.

To prove the second equation in (7.47) fix an index ¢ € {1,...,n} and a point
¢ € R"™. Then the divergence theorem on ) := B, \ B.() asserts that

[ (K= 0@ - K(€ - 0)0if @) dm(z)
R™\B:(§)

= —/ ((81K§)f + Kgazf) dm
R\ B (§)

—— [ oK) dm
R™\ B¢ (€)

= / viKe f do
9B:(€)

= E xz_gz X ol\xr
—¢<>/{ng(§) F(z) do(z)

€

The last term converges to zero as € tends to zero. Hence

(K * [)(&) = (K = 0:f)(§) = 0i(K = f)(€)
by Theorem [7.35] This proves Theorem [7.41] O
Remark 7.42. Theorem extends to compactly supported C!-functions
f :R® — R and asserts that K * f is C%. However, this does not hold for
continuous functions with compact support. A counterexample is u(z) = |x|?

which is not C? and satisfies f := Au = 3(n + 1)|z|. Tt then follows that
K x Bf (for any 8 € C5°(R™) equal to one near the origin) cannot be C?.

Theorem 7.43 (Calder6n—Zygmund). Fiz an integer n > 2 and a number
1 < p < oo. Then there ezists a constant ¢ = c¢(n,p) > 0 such that

> 18:d5ull, < cllAul, (7.51)

ij=1
for all uw € Cg°(R™).

Proof. See page [254] The proof is based on the exposition in Gilbarg—
Trudinger [5]. O
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The Calderén—Zygmund inequality is a beautiful and deep theorem in the
theory of partial differential equations. It extends to all functions u = K % f
with f € C§°(R") and thus can be viewed as a result about the convolution
operator f +— K x f. Theorem [7.35 shows that a derivative of a convolution
is equal to the convolution with the derivative. This extends to the case
where the derivative only exists in the weak sense and is locally integrable.
For the function K this is spelled out in equation in Theorem [7.41]
Thus the convolution of an LP function with a function whose derivatives
are integrable has derivatives in LP. The same holds for second derivatives.
(The precise formulation of this observation requires the theory of Sobolev
spaces.) The remarkable fact is that the second derivatives of the fundamental
solution K of Laplace’s equation are not locally integrable and, nevertheless,
the Calderén—Zygmund inequality still asserts that the second derivatives of
its convolution u = K * f with a p-integrable function f are p-integrable.
Despite this subtlety the proof is elementary in the case p = 2. Denote by

Vu:= (Ou,...,0pu) : R" - R"
the gradient of a smooth function u : R™ — R.
Lemma 7.44. Fiz an integer n > 2 and let f € C°(R™). Then
IV Pl < Ifly forj=1...om. (7.52)
Proof. Define u := K x f. This function is smooth by Theorem but it

need not have compact support. By the divergence theorem

]Vu|2dm+/ uAudm = Z@i(uﬁiu)dm:/ u@da (7.53)
P

By By iz M— B, Ov

for all » > 0. By Poisson’s identities ((7.45) and (7.47)), we have
Since f has compact support it follows from ([7.43)) that there is a constant

¢ > 0 such that |u(x)|+ |0u/dv(z)| < c|z|'™™ for |x| sufficiently large. Hence
the integral on the right in ((7.53)) tends to zero as r tends to infinity. Thus

IVally = [ [Vutdm =~ [ woyfim = [ (@) am < [9ul, 11,

R”
This proves Lemma [7.44] O
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By Theorem|7.35 the space C5°(R™) is dense in L2(R™). Thus Lemmal7.44]
shows that the linear operator f +— 0y (K;* f) extends uniquely to a bounded
linear operator from L2?(R™) to L?*(R"). The heart of the proof of the
Calderon—-Zygmund inequality is the following delicate argument which shows
that this operator also extends to a continuous linear operator from the Ba-
nach space L'(R™) to the topological vector space L' (R™) of weakly inte-
grable functions introduced in Section [6.1} This argument occupies the next
six pages. Recall the definition

£l 1,00 = suptris (1),
>0
where
re(t) :=m(A, f), At f) = {z e R"||f(x)] > t}.
(See equation (§6.1)).)
Lemma 7.45. Fiz an integer n > 2. Then there is a constant ¢ = c¢(n) > 0
such that
10k (B * Pl o0 < €l flly (7.54)
for all f € CP(R™) and all indices j, k=1,...,n.
Proof. Fix two integers j, k € {1,...,n} and let T : L*(R") — L*(R"™) be
the unique bounded linear operator that satisfies
Tf = 0u(K; * ) (7.55)

for f € Cg°(R™). This operator is well defined by Lemma [7.44 We prove in
three steps that there is a constant ¢ = c(n) > 0 such that ||T'f[|, < c||f],
for all f € LY(R™)NL*(R™). Throughout we abuse notation and use the same
letter f to denote a function in £2(R™) and its equivalence class in L*(R™).

Step 1. There is a constant ¢ = ¢(n) > 1 with the following significance. If
B C R" is a countable union of closed cubes (Q; C R™ with pairwise disjoint
interiors and if h € L2(R™) N LY (R™) satisfies

hlrms = 0, / hdm =0  foralli € N (7.56)

then
ke (t) < ¢ (m(B) + % HhH1> (7.57)

for all t > 0.
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For i € N define h; : R" — R by
PR h(z), if z € Q;,
ha() := { 0, ifzéQ,

Denote by ¢; € Q; the center of the cube @; and by 2r; > 0 its side length.
Then |z — ¢;| < y/nr; for all 2 € Q;. Fix an element € R"\ ;. Then Kj;
is smooth on z — @); and so Theorem [7.35] asserts that

(Thi)(x) = (Op K + i) ()

— /.(akKj(x —y) — 0K (x — q;)) ha(ly) dm(y).

3

(7.58)

This identity is more delicate than it looks at first glance. To see this, note
that the formula only holds for compactly supported smooth func-
tions but is not meaningful for all L? functions f because K * f may not be
differentiable. The function h; is not smooth so care must be taken. Since
r ¢ Q; = supp(h;) one can approximate h; in L?(R") by a sequence of com-
pactly supported smooth functions that vanish near z (by using the mollifier
method in the proof of Theorem . For the approximating sequence
part (iii) of Theorem asserts that the partial derivative with respect to
the kth variable of the convolution with K is equal to the convolution with
O K; near . Now the first equation in follows by taking the limit.
The second equation follows from . It follows from that

)@ < [ P =) = Ao~ a)llu(w)] dm(y)
< Sggakxj.(x —y) = OIS (x — q)| 1l
< Vnrg sup | VORK;(x — y)| || hill,
yeQ;
< clriségzx_—ylnﬂuhiﬂl
- annl.

Here d(x,Q;) := inf,ecq,|r — y| and

n n(n+3
cp =ci(n) :=max sup [|y]"T|VOLK;(y)| < M
Ik yerm\{0} Wn,

Here the last inequality follows by differentiating equation ((7.43)).
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Now define
P, = {a: cR" | |z —qi] < 2\/ﬁri} D Q.
Then d(z,Q;) > |z — ¢;| — +/nr; for all z € R™\ P,. Hence

1
Thidm < o / —dm(x) ||
/]R”\Pi ! r\P; ([T — q;| —\/nry) + !

1
— e / _dm(y) ||
wi>2van (Jy| — v/r)"™ '

/°° wys" s Al
= Ty 7 " |k,
' 2y/nr; (S — \/ﬁ?”i>n+l i
o) n—1
, d
_ clwnn/ (H‘/jﬁf ® ikl
VT

_ * ds
< 6?2 lwnﬁ'/ — [I7illy
Vg S

= co||hill; -

Here c; = c3(n) == c1(n)2" twpy/n < 27710%2(n + 3). The third step in
the above computation follows from Fubini’s Theorem in polar coordinates
(Exercise [7.47). Thus we have proved that

/ |Th;| dm < cs |||, for all i € N. (7.59)
R\ P,

Recall that Th and Th; are only equivalence classes in L?(R"). Choose
square integrable functions on R" representing these equivalence classes and
denote them by the same letters Th, Th; € L*(R™). We prove that there is
a Lebesgue null set £/ C R" such that

Th(z)| <> |Thi(z)]  forallz € R"\ E. (7.60)
=1

To see this, note that the sequence St | h; converges to h in L*(R") as /
tends to infinity. So the sequence Zle Th; converges to Th in L?(R") by
Lemmal7.44] By Corollary a subsequence converges almost everywhere.
Hence there exists a Lebesgue null set £ C R™ and a sequence of integers
0 <ty </ly <3< ---such that the sequence Zf;l Th;(x) coverges to Th(x)
as v tends to infinity for all x € R™\ E. Since |Zf”:1 Thi(z)] <>, |Thi(z)|
for all x € R™, this proves .
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Now define -
A= U P
i=1

Then it follows from ((7.59), (7.60]), and Theorem that
Thldm < / Th;| dm
L L

=1

= > / |Th;| dm
i=1 R\ A

< ; /RR\PJTM dm
< o Z 17l
i=1

= Al

Moreover, N N

m(A) <Y m(P) =cs Y m(Q;) = csm(B),
i=1 i=1
where
c3 =c3(n) = % =m(B ) = w7t
Hence
tern(t) < tm(A)+tm ({z € R"\ A||Th(z)| > t})

IN

tm(A) + / |Th| dm
R\ A

cstm(B) + ¢ ||Al|,
cs(tm(B) + [I]l,)

IA A

for all t > 0, where
c1 = ca(n) == max{cz(n), cs(n)} < max{2"'n¥2(n + 3),w,n™* 1.

This proves Step 1.
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Step 2 (Calderén—Zygmund Decomposition).
Let f € L2(R") N LYR™) and t > 0. Then there exists a countable collection
of closed cubes Q; C R™ with pairwise disjoint interiors such that

m(Qs) < % Fl < 2"m(Q;)  foralli€N (7.61)
Qi
and
If(z)| <t for almost all x € R™ \ B, (7.62)

where B :=J;2, Q.
For £ € Z™ and ¢ € Z define

Q) ={zeR"|27% <z <27&+ 1)}

Let
2:={Q¢ )|tz tel}
and define the subset 2y C 2 by

- tm(Q) < [olf|dm and, for all Q" € 2, }
a={eca] 2 Jolfldm < tm(Q)

Then every decreasing sequence of cubes in £ contains at most one element
of Zy. Hence every element of 2, satisfies (7.61) and any two cubes in 2,
have disjoint interiors. Define B := UQE 9, @ We prove that

T€R'\B, z€Qe2  — %/demgt. (7.63)

Suppose, by contradiction, that there exists an element x € R™\ B and a cube
Q) € 2 such that x € Q and tm(Q) < fQ|f| dm. Then, since || f||; < oo, there
is a maximal cube @ € 2 such that 2 € @ and tm(Q) < fQ|f| dm. Such a
maximal cube would be an element of 2, and hence x € B, a contradiction.
This proves . Now Theorem asserts that there exists a Lebesgue
null set £ C R™\ B such that every element of R" \ (B U E) is a Lebesgue
point of f. By (7.63)), every point z € R™\ (B U E) is the intersection point
of a decreasing sequence of cubes over which |f| has mean value at most ¢.
Hence it follows from Theorem that |f(z)| <t forallz € R*\ (BUE).
This proves Step 2.
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Step 3. Let ¢ = c¢(n) > 1 be the constant in Step 1. Then
IT Al 00 < (27 +6e) IS, (7.64)
for all f € L*(R™) N LY(R™).

Fix a function f € £2(R") N L'(R") and a constant ¢t > 0. Let the Q; be as
in Step 2 and define

Then m(Qs) < § Jo,|fldm for all i by Step 2 and hence

1 1
m(B) = m@) < ;3 [ if1dm < Lifl
Define g, h : R — R by

fd
g = fXR"\B‘i‘Zj?;(—Q;nXQw h:=f—g.

Then
gl < [1£1l; 1Al < 201 f]; -

Moreover, h vanishes on R" \ B and |, o, lvdm = 0 for all i. Hence it follows
from Step 1 that

o) < ¢ (m(B) + 141l ) < %111, (7.65)

Moreover, it follows from Step 2 that |g(z)| < ¢ for almost every z € R"\ B
and |g(z)| < 2"t for every x € int(Q;). Thus |g| < 2"t almost everywhere.
Hence it follows from Lemma [7.36] that

1 2" 2"
i) < [ loPam < [ Jglam < 0rl. (00)
R"” R”

Now combine ([7.65)) and (7.66) with the inequality (7.36]) in Lemma to

obtain the estimate

o+l 4 G
g (2t) < kg (t) + rrn(t) < ——— || fl-

Here the splitting f = g + h depends on ¢ but the constant ¢ does not. Mul-
tiply the inequality by 2¢ and take the supremum over all ¢ to obtain ((7.64]).
This proves Step 3 and Lemma [7.45 O
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Theorem 7.46 (Calderén—-Zygmund). Fiz an integer n > 2 and a number
1 < p < oo. Then there exists a constant ¢ = c¢(n,p) > 0 such that

10:(EK5 = P, < ellfll, (7.67)
for all f € CP(R™) and alli,j=1,...,n.

Proof. For p = 2 this estimate was established in Lemma with ¢ = 1.
Second, suppose 1 < p < 2 and let ¢;(n) be the constant of Lemma .
For i,j = 1,...,n denote by T;; : L*(R") — L*(R") the unique bounded
linear operator that satisfies T;;f = 0;(K; * f) for f € Cg°(R"). Then
1T 0 < ca(n)|Iflly for all f € C5°(R") and all 4,j by Lemma .
Since C§°(R™) is dense in L*(R™) N L'(R™) by Theorem it follows that
1T £l oo < cr(n) |If]l; for all f € L*(R") N L'(R"). Hence Theorem [7.37]
(with ¢ = 2) asserts that holds with

¢ =c(n,p) =2 (M’ﬁ)w c1(n)2/P1,

Third, suppose 2 < p < oo and choose 1 < ¢ < 2 such that 1/p+1/q = 1.
Then it follows from Theorem integration by parts, Holder’s inequality,
and from what we have just proved that, for all f,g € C§°(R"),

/n(&-(Kj * f))gdm = /n(aiajf)gdm

f(9:9;9) dm

R”

[ F(0(06, = 9) dm

< A1, 19 (K * gl
< c(n ) I £1l, lglly -

Since C3°(R™) is dense in L4(R™) by Theorem [7.35] and the Lebesgue measure
is semi-finite, it follows from Lemma that [|0;(K; = f)l, < c(n.q) | 1,
for all f € C5°(R™). This proves Theorem [7.46] O

Proof of Theorem[7.43. Fix an integer n > 2 and a number 1 < p < oo.
Let ¢ = ¢(n, p) be the constant of Theorem and let uw € C3°(R™). Then
dju = 0;(K % Au) = K * Au by Theorem [7.41] Hence it follow from Theo-
rem with f = Au that [[0;0;ul|, = [|0;(K; * Au)[|, < c(n, p) [|[Au]|, for
1,7 =1,...,n. This proves Theorem [7.43 O]



7.8. EXERCISES 255

7.8 Exercises

Exercise 7.47 (Lebesgue Measure on the Sphere).
For n € N let (R", A,,,m,) the Lebesgue measure space, denote the open
unit ball by B" := {x € R"||n| < 1}, and the unit sphere by

S 1= 9B" = {z e R"||z] = 1}.

For A C S"! define A* := {x € B"!|(x,£+/1 —|z|?) € A}. Prove that
the collection

As={AC S AY, A" € 4,1}
is a o-algebra and that the map o : Ag — [0, 00| defined by

By
a+ /1 —|z)? - 1—|:1c|2

for A € Ag is a measure. Prove Fubini’s Theorem in Polar Coordinates
stated below. Use it to prove that w, := ¢(S"!) < co.

Fubini’s Theorem for Polar Coordinates: Let f : R — R be Lebesgue
integrable. For r > 0 and x € S™ ' define f"(z) := f.(r) :== f(rx). Then
there exists a set E € Ag such that o(E) = 0 and f, € L'([0,00)) for all
r € S\ E, and there exists a Lebesque null set F C [0,00) such that
fre LYo) for allr € [0,00) \ F. Define g: S"™' - R and h: [0,00) - R
by g(x):=0 forx € E, h(r):=0 forr € F, and

g(z) = /[0 )r”_lfx(r) dm(r), h(r) =" frdo, (7.68)

Sn—1
forxz € S"Y\ E andr € [0,00) \ F. Then g € L(c), h € £}([0,00)), and
fdm, = / gdo = / hdm;. (7.69)
R™ Sn—1 [0,00)

Hint: Define the diffeomorphism ¢ : B! x (0,00) — {z € R"|x, > 0} by
o(z,7) == (rz,r(1 — |z|>)"/2). Prove that det(dp(z,r)) = (1 — |z[?)~ /21
for x € B"~! and r > 0. Use Theorem and Fubini’s Theorem [7.30
Exercise 7.48 (Divergence Theorem). Let f : R — R be a smooth
function. Prove that

/ 0.f dm,, = /S af(@)do(x). (7.70)

Hint: Assume first that ¢ = n. Use the fundamental theorem of calculus

and Fubini’s Theorem for R» = R ! x R.
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Exercise 7.49. Prove that

/°° sin(x) Ve sin(x) gp =T
0

dz = lim T = —.
x e—0 c xT 2

Hint: Use the identity [;° e " dt = 1/r for r > 0 and Fubini’s Theorem.
Exercise 7.50. Define the function f : R? — R by

sign(zy) 1, if z >0,
flz,y) = ————, sign(z) := 0, if z=0,
Y 1, ifz <0,

for (z,y) # 0 and by f(0,0) := 0. Prove that f,, fY : R — R are Lebesgue
integrable for all x,y € R. Prove that the functions R - R : z — fR fedmy
and R —-R:y+— fR fYdm; are Lebesgue integrable and

A(Aﬂﬁwwﬂﬂ>“Mw=4(4ﬂawwmw)mun

Prove that f is not Lebesgue integrable.

Exercise 7.51. Let (X, A, ) and (Y, B,v) be two o-finite measure spaces
and let f € £'(u) and g € L'(v). Define h: X x Y — R by

hz,y) == f(x)g(y), forre XandyeV.

Prove that h € L'(p®@v) and [ , hd(p®@v) = [, fdu [, gdv.

Exercise 7.52. Let (X, A, ) and (Y, B,v) be two o-finite measure spaces
and let A : A® B — R be any measure such that \(A x B) = u(A)v(B) for
all A€ A and all B € B. Prove that A = p ® v.

Exercise 7.53. Define ¢ : R — R by

[ 1—cos(z), for0<uxz<2m,
o(x) = { 0, otherwise.

Define the functions f,g,h : R — R by
f@=1 gl =@, ha) = [ ot

for x € R. Prove that (f *xg) *h =0 and f % (¢ *x h) > 0. Thus the convolu-
tion need not be associative on nonintegrable functions. Compare this with
part (v) of Theorem [7.32] Prove that E(|f| = |g|, |h|) = E(|f],]g| *|h]) =R
while E(f xg,h) = E(f,g*h) = 0.
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Exercise 7.54. Let (R, A, m) be the Lebesgue measure space, let B C A be
the Borel o-algebra, and denote by M the Banach space of all signed Borel
measures £ : B — [0,00) with the norm ||u|| := |p|(R). (See Exercise [5.34])
The convolution of two signed measures pu,v € M is the map

pwxv:B—R
defined by
(p*v)(B):=(pov)({(z,y) eR*|z+y € B}) (7.71)
for B € B, where
(pov)=preov +p ev —pter —p v
(See Definition and Theorem [5.20]) Prove the following.
(i) If p,v € M then pxv € M and
e vl < el il
(ii) There exists a unique element § € M such that
0% (b= pt

for all p € M.

(iii) The convolution product on M is commutative, associative, and dis-
tributive. Thus M is a commutative Banach algebra with unit.

(iv) If f € LYR) and py : B — R is defined by

pg(B) = / fdm for Be B
B

then py € M and ||py| = | fl;.
(v) If f,g € L'(R) then
Hof % Hg = Hfxg-
(vi) Let A\, v € M. Then A = p * v if and only if

[rin= [ s+ sy

for all bounded Borel measurable functions f : R — R.
(vii) If p,v € M and B € B then

(s n)(B) = [ uB -1 dvle).

R
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Chapter 8

The Haar Measure

The purpose of this last chapter is to prove the existence and uniqueness of a
normalized invariant Radon measure on any compact Hausdorff group. In the
case of a locally compact Hausdorff group the theorem asserts the existence
of a left invariant Radon measure that is unique up to a scaling factor. An
example is the Lebesgue measure on R™. A useful exposition is the paper by
Gert K. Pedersen [16] which also discusses the original references.

8.1 Topological Groups
Let G be a group, in multiplicative notation, with the group operation
GxG—=G:(r,y) — axy, (8.1)
the unit 1 € G, and the inverse map
GGz ol (8.2)
A topological group is a pair (G, ) consisting of a group G and a topology
uc2°

such that the group multiplication and the inverse map are con-
tinuous. Here the continuity of the group multiplication is understood
with respect to the product topology on G x G (see Appendix . A lo-
cally compact Hausdorff group is a topological group (G,U) such that
the topology is locally compact and Hausdorff (see page [81)).

259
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Example 8.1. Let G be any group and define U := {(), G}. Then (G,U) is
a compact topological group but is not Hausdorff unless G = {1}.

Example 8.2 (Discrete Groups). Let G be any group. Then the pair
(G,U) with the discrete topology U := 2% is a locally compact Hausdorff
group, called a discrete group. Examples of discrete groups (where the
discrete topology appears naturally) are the additive group Z", the multi-
plicative group SL(n,Z) of integer n x n-matrices with determinant one, the
mapping class group of isotopy classes of diffeomorphisms of any manifold,
and every finite group.

Example 8.3 (Lie Groups). Let G C GL(n,C) be any subgroup of the
general linear group of invertible complex n X n-matrices that is closed as a
subset of GL(n, C) with respect to the relative topology, i.e. GL(n,C) \ G is
an open set in C™*". Let U C 2% be the relative topology on G, i.e. U C G is
open if and only if there is an open subset V' C C"*" such that U =GN V.
Then (G,U) is a locally compact Hausdorff group. In fact, it is a basic
result in the theory of Lie groups that every closed subgroup of GL(n,C) is a
smooth submanifold of C™*™ and hence is a Lie group. Specific examples of
Lie groups are the general linear groups GL(n, R) and GL(n, C), the special
linear groups SL(n,R) and SL(n, C) of real and complex n x n-matrices with
determinant one, the orthogonal group O(n) of matrices x € R™*"™ such that
2Tz = 1, the special orthogonal group SO(n) := O(n)NSL(n, R), the unitary
group U(n) of matrices x € C"*" such that z*z = 1, the special unitary group
SU(n) := U(n) N SL(n, C), the group Sp(1) of the unit quaternions, the unit
circle S = U(1) in the complex plane, the torus T" := S' x --- x S' (n
times), or, for any multi-linear form 7 : (C*)* — C, the group of all matrices
z € GL(n,C) that preserve 7. The additive groups R™ and C" are also Lie
groups. Lie groups form an important class of locally compact Hausdorff
groups and play a central role in differential geometry.

Example 8.4. If (V,||-||) is a normed vector space (Example [1.11]) then the
additive group V is a Hausdorff topological group. It is locally compact if
and only if V' is finite-dimensional.

Example 8.5. The rational numbers Q with the additive structure form a
Hausdorff topological group with the relative topology as a subset of R. It is
totally disconnected (every connected component is a single point) but does
not have the discrete topology. It is not locally compact.
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Example 8.6 (p-adic Integers). Fix a prime number p € N and denote by
NO =NU {0}

the set of nonnegative integers. For x,y € Z define

dy(z,y) == |r —yl|, := inf {p_k ‘ keNy,z—ye ka} . (8.3)

Then the function
dy:Z xZ —[0,1]

is a distance function and so (Z,d,) is a metric space. It is not complete.
Its completion is denoted by Z, and called the ring of p-adic integers.
Here is another description of the p-adic integers. Consider the sequence of
projections

Rz T Ty S TS P T T TS {1,
The inverse limit of this sequence of maps is the set of sequences
Z, = {3; = (2p)ren, | Tk € Z)p 7, Ti(zy) = 2p_y for all k € N} :

This set is a commutative ring with unit. Addition and multiplication are
defined term by term, i.e.

T4y = (Tk + Yr)keNos ry = (TeYr) ke,

for x = () ken, € Zp and y = (Y )ren, € Zp. The ring of p-adic integers is
a compact metric space with

dy(z,y) = inf {p’k ) k € Ny, xp = yk} : (8.4)
The inclusion of Z into the p-adic integers is given by

by L — Ly, 1p(z) == (x mod p*)ren,-
This is an isometric embedding with respect to the distance functions

and (8.4). The additive p-adic integers form an uncountable compact Haus-
dorff group (with the topology of a Cantor set) that is not a Lie group.
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Example 8.7 (p-adic Rationals). Fix a prime number p € N. Write a
nonzero rational number z € Q in the form x = p*a/b where k € Z and the
numbers a € Z and b € N are relatively prime to p, and define |z|, := p~*.
For x = 0 define |0], := 0. Define the function d, : Q x Q — [0, 00) by

dp(x>y) = | — y'p

::inf{p_k‘kGZ,x—y:pk%,aez,beN\pN}. (8:5)
Then (Q,d,) is a metric space. The completion of Q with respect to d, is
denoted by Q, and is called the field of p-adic rational numbers. It
can also be described as the quotient field of the ring of p-adic integers in
Example[8.6] The multiplicative group of nonzero p-adic rationals is a locally
compact Hausdorff group that is not a Lie group. One can also consider
groups of matrices whose entries are p-adic rationals. Such groups play an
important role in number theory.

Example 8.8 (Infinite Products). Let I be any index set and, for i € I,
let G; be a compact Hausdorff group. Then the product

G::HGi

iel

is a compact Hausdorff group. Its elements are maps I — U;c/G; 1 i — z;
such that z; € G; for all ¢ € I. Write such a map as © = (z;);c;. The
product topology on G is defined as the smallest topology such that the
obvious projections 7; : G — G; are continuous. Thus the (infinite) products
U = Hie[ U; of open sets U; C G;, such that U; = G; for all but finitely
many 4, form a basis for the topology of G. (See Appendix Bl for #1 = 2.)
The product topology is obviously Hausdorff and Tychonoff’s Theorem
asserts that it is compact (see Munkres [14]). An uncountable product of
nontrivial groups G; is not first countable.

Example 8.9. Let (X,]:]|) be a Banach algebra with a unit 1 and the
product X x X — X : (z,y) — xy. (See page [236/) Then the group of
invertible elements G := {x € X' |3y € X such that 2y = yz = 1} is a Haus-
dorff topological group. Examples include the group of nonzero quaternions,
the general linear group of a finite-dimensional vector space, the group of
bijective bounded linear operators on a Banach space, and the multiplicative
group of nowhere vanishing real valued continuous functions on a compact
topological space. In general G is not locally compact.
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8.2 Haar Measures

Throughout let G be a locally compact Hausdorff group, in multiplicative
notation, and denote by B C 2% its Borel o-algebra. We begin our discussion
with a technical lemma about continuous functions on G.

Lemma 8.10. Let f € C.(G) and fix a constant ¢ > 0. Then there exists an
open neighborhood U of 1 such that, for all x,y € G,

Tlyel = [f(z) = fy)l <e. (8.6)

Proof. Choose an open neighborhood Uy C G of 1 with compact closure and
define K := {alf1 |a € supp(f), b € Uo}. This set is compact because the

maps (8.1) and (8.2]) are continuous. Also,
¢ K, a7y el = flx)=f(y)=0 (8.7)

for all z,y € G. (If y € supp(f) and z7'y € Uy then z = y(z'y)™' € K.)
Since f is continuous there exists, for each x € K, an open neighborhood
V(z) C G of x such that

€

y € V(x) = (@) = fy)l < 5 (8.8)

Since the map G — G : y — 2~y is a homeomorphism, the set 7'V (z) is an
open neighborhood of 1 for every x € K. Since the map is continuous
it follows from the definition of the product topology in Appendix [B] that,
for every « € K, there exists an open neighborhood U(z) C G of 1 such that
the product neighborhood U(x) x U(xz) of the pair (1, 1) is contained in the
pre-image of 7'V (z) under the multiplication map . In other words,

a,b € Ul(x) = xab € V(x). (8.9)

Since the map G — G : y — xy is a homeomorphism the set zU(x) is
an open neighborhood of z for every z € K. Since K is compact there
exist finitely many elements xi,...,z, € K such that K C Ule x;U(z;).
Define U := Uy N ﬂle U(z;) and let z,y € G such that z7'y € U. If z ¢ K
then f(z) = f(y) = 0 by (8.7). Hence assume x € K. Then there exists
an index i € {1,...,¢} such that x € 2;U(z;) and therefore z; 'z € U(x;).
Hence z = x;(z;'z)1 € V(x;) and y = x;(z; 'z)(x1y) € V(z;) by (8.9).
Hence it follows from that

[f(@) = f(y)| < |f(2) = flaa)| + | f () = fFly)l < e
This proves Lemma [8.10} O]
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For x € G define the homeomorphisms L., R, : G — G by
L,(a) = za, R.(a) :=ax  forz e G. (8.10)
They satisfy
L,oL,=L,, R,oR, = Ry, L,oR,=R,o0L,. (8.11)
For A C G and = € G define
TA = {xa‘aeA}, Ax = {ax}aeA}, Al = {a’l‘aeA}.
Thus xA = L,(A) and Az = R,(A).

Definition 8.11. A measure u : B — [0,00] is called left invariant if
p(xB) = p(B) for all B € B and all v € G. It is called right invariant if
pu(Bzx) = p(B) for all B € B and all x € G. It is called invariant if it is
both left and right invariant. A left Haar measure on G is a left invariant
Radon measure that does not vanish identically. A right Haar measure on
G s a right invariant Radon measure that does not vanish identically. An
invariant Haar measure on G is an invariant Radon measure that does
not vanish identically.

Theorem 8.12 (Haar). Let G be a locally compact Hausdorff group. Then
the following holds.

(i) G admits a left Haar measure p, unique up to a positive factor. FEvery
such measure satisfies W(U) > 0 for every nonempty open set U C G.

(ii) G admits a right Haar measure i, unique up to a positive factor. Every
such measure satisfies W(U) > 0 for every nonempty open set U C G.

(iii) Assume G is compact. Then G admits a unique invariant Haar measure
w such that u(G) = 1. This measure satisfies f(B™*) = u(B) for all B € B
and pu(U) > 0 for every nonempty open set U C G.

Proof. See page [276] [

Examples of Haar measures are the restriction to the Borel o-algebra of
the Lebesgue measure on R™ (where the group structure is additive), the
restriction to the Borel o-algebra of the measure o on S' = U(1) or on
S3 = Sp(1) in Exercise , the measure dt/t on the multiplicative group of
the positive real numbers, and the counting measure on any discrete group.
The proof of Theorem rests on the Riesz Representation Theorem [3.15]
and the following result about positive linear functionals.



8.2. HAAR MEASURES 265

Definition 8.13. Let G be a locally compact Hausdorff group. A linear
functional A : C.(G) — R is called left invariant if

A(f o L) = A(f) (5.12)
for all f € C.(G) and all x € G. It is called right invariant if
A(f o Ry) = A(f) (8.13)

forall f € C.(G) and all x € G. It is called invariant if it is both left and
right invariant. It is called o left Haar integral if it is left invariant, posi-
tive, and nonzero. It is called a right Haar integral if it is right invariant,
positive, and nonzero.

Theorem 8.14 (Haar). Every locally compact Hausdorff group G admits a
left Haar integral, unique up to a positive factor. Moreover, if A : C.(G) — R
is a left Haar integral and f € C.(G) is a nonnegative function that does not
vanish identically then A(f) > 0.

Proof. See page [268 [

The proof of Theorem given below follows the notes of Pedersen [16]
which are based on a proof by Weil. Our exposition benefits from elegant
simplifications due to Urs Lang [I1]. In preparation for the proof it is con-
venient to introduce some notation. Let

CH(G):={feC(G)|f=0, f#£0} (8.14)

be the space of nonnegative continuous functions with compact support that
do not vanish identically. A function A : CFH(G) — [0, 00) is called

e additive iff A(f + g) = A(f) + A(g) for all f,g € CF(G),

e subadditive iff A(f+ g) < A(f)+ A(g) for all f,g € CF(G),

e homogeneous iff A(cg) = cA(f) for all f € CF(G) and all ¢ > 0,

e monotone iff f < g implies A(f) < A(g) for all f,g € CFH(G),

e left invariant iff A(f o L,) = A(f) for all f € CF(G) and all z € G.

Every additive functional A : CF(G) — [0,00) is necessarily homogeneous
and monotone. Moreover, every positive linear functional on C.(G) restricts
to an additive functional A : CF(G) — [0,00) and, conversely, every addi-
tive functional A : CF(G) — [0,00) extends uniquely to a positive linear
functional on C.(G). This is the content of the next lemma.
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Lemma 8.15. Let A : CFH(G) — [0, 00) be an additive functional. Then there
is a unique positive linear functional on C.(G) whose restriction to C.F(G)
agrees with A. If A is left invariant then so is its linear extension to C.(G).

Proof. We prove that A is monotone. Let f,g € CF(G) such that f < g. If
f # g then g — f € CH(G) and hence

ACf) < AS) + Mg = ) = Ag)

by additivity. If f = g there is nothing to prove.
We prove that A is homogeneous. Let f € CF(G). Then A(nf) = nA(f)
for all n € N by additivity and induction. If ¢ = m/n is a positive ratio-

nal number then A(f) = nA(f/n) and hence A(cf) = mA(f/n) = cA(f).
If ¢ > 0 is irrational then it follows from monotonicity that

al(f) = Maf) < Acf) < ADbf) = bA(S)

for all a,b € Q with 0 < @ < ¢ < b, and this implies A(cf) = cA(f).
Now define A(0) := 0 and, for f € C.(G), define A(f) := A(f*) —A(f).
If f,g € C(G) then fT+gt+(f+9) " =f" +g +(f+9g)", hence

AE)+ M) +AM(f+9)7) =Af)+ A7) +A(f+9)7)

by additivity, and hence A(f) + A(g) = A(f + g). Moreover, (—f)" = f~
and (—f)” = ftand so A(—f) = A(f7) = A(fT) = —A(f). Hence it follows
from homogeneity that A(cf) = cA(f) for all f € C.(G) and all ¢ € R. This
shows that the extended functional is linear.

If the original functional A : CF(G) — [0, 00) is left-invariant then so is
the extended linear functional on C,(G) because (f o L,)* = f* o L, for all
f € C.(G) and all z € G. This proves Lemma [8.15 O

Consider the space

A is subadditive, monotone,
homogeneous, and left invariant

L = {A : CH(G) — (0,00) } . (8.15)
The strategy of the proof of Theorem [8.14]is to construct certain functionals
A, € Z associated to functions g € CF(G) supported near the identity ele-
ment and to construct the required positive linear functional A : C.(G) — R
as a suitable limit where the functions g converge to a Dirac d-function at the
identity. The precise definition of the A, involves the following construction.
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Denote by & the set of all Borel measures p : B — [0, 00) of the form

k
i=1

where k € N, oy, ..., oy are positive real numbers, x1, ...,z € G, and J,, is
the Dirac measure at x; (see Example [1.31]). The norm of a measure y € &

of the form (8.16) is defined by

k
el = p(G) = 3 > 0 (8.17)

i=1
If v := Z§=1 Bjdy, € & is any other such measure define the convolution

product of 4 and v by
koot
x V= Z Z B30y, -
i=1 j=1

This product is not commutative in general. It satisfies ||p* v|| = ||ul| ||v|-
Associated to a measure p € & of the form (8.16|) are two linear operators
L, R, :C.G)— C.(G) defined by

(Luf)(a) = Zaif(%a)a (Ruf)(a) = Za@-f(a:ci) (8.18)

for f € C.(G) and a € G. The next two lemmas establish some basic
properties of the operators L, and R,. Denote by

[ fllo = suplf ()]
zeG

the supremum norm of a compactly supported function f: G — R.

Lemma 8.16. Let p,v € &, f € C.(G), and x € G. Then

LyoL,= Ly folLe=1Ls [, [ILuflle < el
RyoRy= Ry,  foRs=Rsf [Rufll <lelllflle
L,oR,=R,oL,.

Proof. The assertions follow directly from the definitions. ]
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Lemma 8.17. Let f,g € CF(G). Then there exists a p € & such that

[ < Lyg.
Proof. Fix an element y € G such that g(y) > 0. For z € G define

flx)+1
9(y)

This set is an open neighborhood of x. Since f has compact support there
exist finitely many points z1, ...,z € G such that supp(f) C U,, U---UU,,.
Define

Uy = {a €G ’ fla) < g(yx‘la)}

Then
fl@) < 30 L0  garta) = (L,0)(a)
—~  g(y)
for all a € supp(f) and hence f < L,g. This proves Lemma [8.17] O

Proof of Theorem[8.14 The proof has five steps. Step 1 is the main con-
struction of a subadditive functional M, : CF(G) — (0, 00) associated to a
function g € CJ(G). Step 2 shows that M, is asymptotically linear as g
concentrates near the unit 1. The heart of the convergence proof is Step 3
and is due to Cartan. Step 4 proves uniqueness and Step 5 proves existence.

Step 1. For f,g € CF(G) define

My(f):=M(f;9) :=inf {|lull |pe 2, f<L.g}. (8.19)

Then the following holds.

(i) M(f;9) >0 for all f,g € CHG).

(ii) For every g € CH(G) the functional M, : CH(G) — (0, 00) is subadditive,
homogeneous, monotone, and left invariant and hence is an element of £ .
(iii) Let A € Z. Then

A(f) < M(f;g)A(g)  for all f,g € CF(G). (8.20)

In particular, M(f;h) < M(f;9)M(g;h) for all f,g,h € CHG).
(iv) M(f; f) =1 forall f € CF(G).
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We prove part (ii). Monotonicity follows directly from the definition. Homo-
geneity follows from the identities L.,g = cL,g and ||cu|| = ¢ ||p||. To prove
left invariance observe that

(Lug) o Lo = Ly, g, i doll = [l

for all p € & by Lemma8.16| Since f < L,g if and only if foL, < (L,g)oL,
this proves left invariance. To prove subadditivity, fix a constant € > 0 and
choose p, ;i € & such that

& g
f<Lug, [ <Lyg, |pll<M(f;g)+ 3 ||| < M(f'59)+ 3
Then f+ f' < L,g+ L,yg = L,+,vg and hence

M(f+ f59) <+l = llull+ 141 < M(f;9) + M(f'59) + e

Thus M(f + f'59) < M(f;9) + M(f’;9) + ¢ for all € > 0. This proves
subadditivity and part (ii).
We prove part (iii). Fix a functional A € £. We prove first that

AL f) < (el ACH) (8.21)

for all f € CH(G) and all u € . To see this write u = > | a;d,,. Then
L,f= Zle a;(f o L,,) and hence

k

MLuf) <D Meilf o La)) = 3 ail(f o Lu) = 3 a(f) = [lull A(S)

i=1

Here the first step follows from subadditivity, the second step follows from
homogeneity, the third step follows from left invariance, and the last step
follows from the definition of ||u||. This proves (8.21). Now let f, g € C.7(G).
By Lemma there is a u € & such that f < L,g. Since A is monotone
this implies A(f) < A(L,g) < ||ul| A(g) by (8:21). Now take the infimum
over all p € & such that f < L,g to obtain A(f) < M(f;9)A(g).

We prove parts (i) and (iv). Since the map C(G) — (0,00) : f || f]l
is an element of .Z it follows from part (iii) that

[fllee < M(f39) ll9lls (8.22)

and hence M(f;g) > 0 for all f,g € C(G). Next observe that M(f; f) > 1
by (8.22) and M (f; f) <1 because f = L, f. This proves Step 1.
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Step 2. Let f, f' € CH(G) and lete > 0. Then there is an open neighborhood
U C G of 1 such that every g € CH(G) with supp(g) C U satisfies

My(f) + My(f') < (L+2)M,y(f + f'). (8.23)
By Urysohn’s Lemma [A.]] there is a function p € C.(G) such that p(z) = 1
for all = € supp(f) Usupp(f’). Choose a constant 0 < ¢ < 1/2 such that

2+ 25 | + /'l M(pi f+ 1) < . (8.24)
Define

he=f+ 401+ llwr

Then f/h and f’/h extend to continuous functions on G with compact sup-

port by setting them equal to zero on G \ supp(p). By Lemma there
exists an open neighborhood U C G of 1 such that

‘f(x) 3 (y)‘ f'@)  fy)
h(y)| | hx)  h(y)

for all ,y € G. Let g € CH(C) with supp(g) C U. If p = Y'_, aid,, € P
such that h < L, g then, for all a € supp(f),

f(a)g%ff)f(a):gaiﬁj sz (L5 +5) st
)5,

<9

rlyeU -

2

Thus f < L, g, where v := Zle o; ( This implies

14

My(f) <Y (ig_li +5)

i=1

The same inequality holds for f’. Since f + f' < h we find

M,(f) Z < i (;{;(_)+25)§|m\|(1+25).

Now take the infimum over all u € &2 such that h < L, g to obtain
My(f) + My(f') < (14 20)M,(h)
< (L+20)(My(f + f) + 8 |1f + f'llo My(p))
< (420 + 20 [1f + flloo M(ps f+ 1) My(f + ')
< (I+e)My(f +f).
Here we have used the inequalities 1+2 < 2 and . This proves Step 2.
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Step 3. Let f € CH(G) and let € > 0. Then there is an open neighborhood
U C G of 1 with the following significance. For every g € CH(G) such that

supp(g) C U, g(x) =g(z™") forall x € G, (8.25)

there ezists an open neighborhood W C G of 1 such that every h € CF(G)
with supp(h) C W satisfies the inequality

M(f;9)Mn(g) < (14 ¢)Myu(f). (8.26)

This inequality continues to hold with My replaced by any left invariant pos-
itive linear functional A : C.(G) — R.

By Urysohn’s Lemma there is a function p € CF(G) such that p(z) =1
for all z € K := supp(f). Choose gy and ¢; such that

1+ €0 o
0<eg <1 <1 = 8.27
€0 9 1— €0 <1+ g, €1 2M(p, f) ( )
By Lemma there exists an open neighborhood U C G of 1 such that
eTyeU = |fla) - fly)l<a (8.28)

for all z,y € G. We prove that the assertion of Step 3 holds with this
neighborhood U. Fix a function g € CF(G) that satisfies (8.25)). Define

€1
€9 1= —————. 8.29
> D(fig) (5:29)
Use Lemma to find an open neighborhood V' C G of 1 such that
eV = l9(z) — g(y)| < 2 (8.30)

for all z,y € G. Then the sets 2V for z € K form an open cover of K. Hence
there exist finitely many points x1,...,2x, € K such that K C Ule z;V. By
Theorem there exist functions py,...,p, € CF(G) such that

¢
0<p <1, supp(pi) C @V, ZMK =1 (8.31)
i=1

It follows from Step 2 by induction that there exists an open neighborhood
W C G of 1 such that every h € CH(G) with supp(h) C W satisfies

¢
Z Mp(pif) < (1+e0) Mu(f). (8.32)

We prove that every h € CH(G) with supp(h) C W satisfies (8.26)).
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For x € G define the function F, € C.(G) by
F( )= f(y)g (y_lx) for y € G. (8.33)

It follows from ([8.25]) and (|8 - ) that f(x L) = f(y)gly~'x) < ergly'z)

for all 2,y € G Slnce 9(y~'z) = g(a~ y) (9 0 Ly-1)(y) by (8.25)), this
implies f(z)goL,-1 < F,+e1goL,-1. Hence, for allz € G and all h € CF(G),

f(x)Mn(g) < My(F,) + &1 My(g) (8.34)
Now fix a function h € CF(G) with supp(h) C W. By (8.30)) and (8.31)),
pi()Fe(y) = piy) F(W)a(y™'x) < pi(y) f(y) (9(a7"x) + &2)
forall z,y € Gand all t = 1,...,¢. Since F, =), p;F, this implies

(Fz) < ZMh (pil%) < ZMh (pif) (9(x7 @) + £2)

< Z My (pif) g(z; o) + 222 My (f).

Here the last step uses ). By (8.34) and (| -

f(@)My(g) < ZMh (pif) g(z; ) + 262 My (f) + e1 M (9)

(8.35)

< Z My, (pif) g(z; ' x) + 261 My (g).

Here the second step uses (8.29)) and the inequality My (f) < M(f; 9)Mn(g).
Thus (f — 2e1)™ Mu(g) < L,g, where pu:= >, My, (p;f) §,-1. This implies

M,y((f = 2e1)" ) < ZMh pif) < (14 o) Mu(f).

Here the second step uses . Since f < (f — 2e1)t + 2e1p we have
My(f)Mn(g) < Mg((f — 2e1)")Mn(g) + 261 My (p) Mi(g)
< (14 o) Mi(f) + 261 M (p; )M, (f)Mn(g)
= (14 c0) Mpn(f) +e0M,y(f) Mn(9).

Hence
1+¢ 0

My(f)Mn(g) < Mh(f) < (1+e)Mi(f)

and this proves Step 3 for Mj,. Thls inequality and its proof carry over to
any left invariant positive linear functional A : C.(G) — R.
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Step 4. We prove uniqueness.

Let A, A" : C.(R) — R be two left invariant positive linear functionals that
do not vanish identically. Then there exists a function f € C7(G) such that

A(f) > 0 by Lemma[8.15] Hence
Alg) = M(f;9)'A(f) >0

for all g € CF(G) by (8:20). The same argument shows that A’(g) > 0 for
all g € CF(G).

Now fix two functions f, fo € CF(G) and a constant ¢ > 0. Choose an
open neighborhood U C G of 1 that satisfies the requirements of Step 3 for
both f and f; and this constant €. By Urysohn’s Lemma there exists a
function g € C.F(G) such that

g(1) >0, supp(g) C {z € G|z €U andz™' € U}.

Replacing g by the function z — g(z) + g(x~ 1), if necessary, we may assume
that g satisfies (8.25)). Hence it follows from Step 1 and Step 3 that

A(f) < M(f;9)A(g) < (1+e)A(f)

and
(L+e)A(fo) = M(fo; 9)A(g) = A(fo)-

Take the quotient of these inequalities to obtain

ALS) o M(f39) A(f)
A(fo) = M(fo;9) A(fo)

The same inequality holds with A replaced by A’. Hence

(1+e)! <(1+4¢)

A N A
(1+ E)_QA((}];)) : A/<(JJ;)> <1+ EV‘A((};))'
Since this holds for all € > 0 it follows that
A/
NP =MD, e T

Since this holds for all f € CF(G) it follows that A" and cA agree on CF(G).
Hence A’ = ¢A by Lemma [8.15, This proves Step 4.
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Step 5. We prove existence.
The proof follows the elegant exposition [I1] by Urs Lang. Fix a reference
function fy € CF(G) and, for g € CF(G), define A, : CFH(G) — (0,00) by

M(f;g)
A =17 for f € CHG). 8.36
Then A, € Z for all g € CF(G) by Step 1. It follows also from Step 1 that

M(fo;9) < M(fo; f)M(f;g) and M(f;g) < M(f; fo)M(fo;g) and hence
M (fo; £)™F < Ag(f) < M(f5 fo) (8.37)
for all f,g € CF(G). Fix a function f € CH(G) and a number € > 0. Define

A(fo) = 1 and there exists a neighborhood
W C G of 1 such that for all h € CH(G)
supp(h) C W = A(f) < (1 +)An(f)

We prove that Z.(f) # (0. To see this let U C G be the open neighborhood
of 1 constructed in Step 3 for f and e. Choose a function g € CF(G) that
satisfies and choose an open neighborhood W C G of 1 associated to g
that satisfies the requirements of Step 3. Let h € CF(G) with supp(h) C W.
Then M(f;9)M(g;h) < (14 e)M(f;h) and M(fo;9)M(g;h) > M(fo;h)
by Step 3 and Step 1. Take the quotient of these inequalities to obtain
Ay(f) < (T +e)An(f). Since Ay(fo) = 1 it follows that A, € Z.(f). This
shows that Z.(f) # 0 as claimed. Next we observe that

A(f) < M(f; fo)A(fo) = M(f; fo)
for all A € Z.(f) by Step 1. Hence the supremum

A(f) = sup {A(f) [A € Z(f)} (8.38)

is a real number, bounded above by M(f; fo). Since Z.(f) contains an
element of the form A, for some g € CF(G) it follows from (8.37) that

M(fo; /)7F < A(f) < M(f5 fo) (8.39)

for all f € CF(G) and all € > 0. Moreover, the function € — A.(f) is
nondecreasing by definition. Hence the limit

Z(f) = {A cZ

exists and is a positive real number for every f € CH(G).
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We prove that the functional Ay : CFH(G) — (0,00) is left invariant. To
see this, fix a function f € C(G) and an element x € G. Then

Z.f) = Z(f o La)

for all € > 0. Namely, if W C G is an open neighborhood of 1 such that
A(f) < (1 +e)An(f) for all h € CF(G) with supp(h) C W, then the same
inequality holds with f replaced by f o L, because both A and A, are left
invariant. Hence A.(f) = A.(f o L,) for all ¢ > 0 and so Ag(f) = Ao(f o L,).

We prove that the functional Ay : CF(G) — (0,00) is additive. To see
this, fix two functions f, f* € CF(G). We prove that

(L+e) AL+ ) S A) +A(F) < A+ e)AAf + f) (8.41)

for all € > 0. To prove the first inequality in choose any functional
A e Z(f+ f). Then there exists an open neighborhood W C G of 1 such
that A(f + f) < (14 e)An(f + f') for all h € CH(G) with supp(h) C W.
Moreover, we have seen above that h € CI(G) can be chosen such that
supp(h) C W and also Ay, € Z.(f) N Z.(f'). Any such h satisfies

(L+e) A+ ) S A(f+ 1) S M) + M) < A(f) + M)

Take the supremum over all A € Z.(f + f') to obtain the first inequality
in (8.41). To prove the second inequality in fix a constant o > 1
and choose two functionals A € Z.(f) and A" € Z.(f’). Then there exists
an open neighborhood W C G of 1 such that A(f) < (1 + ¢)A,(f) and
N(f) < (1+e)An(f) for all h € CF(G) with supp(h) C W. By Step 2,
the function h € CF(G) can be chosen such that supp(h) C W and also
A (f) + An(f) < alp(f+ f) and Ay € Zo(f + f'). Any such h satisfies

(L+) (A +A(f) < M)+ M) S alu(f + f) S alo(f + f).

Take the supremum over all pairs of functionals A € Z.(f) and A’ € Z.(f")
to obtain (1 — &)~ (Ac(f) + A:(f')) < aA(f + f) for all @ > 1. This proves
the second inequality in (8.41). Take the limit & — 0 in to obtain
that Ay is additive. Moreover, it follows directly from the definition that
Ao(fo) = 1. Hence it follows from Lemma that Ag extends to a nonzero
left invariant positive linear functional on C.(G). This proves Step 5 and
Theorem [8.14] O
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If one is prepared to use some abstract concepts from general topology
then the existence proof in Theorem [8.14]is essentially complete after Step 2.
This approach is taken in Pedersen [16]. In this language the space

G:={9eC/(Q)]0<g<1,g(1) =1}

is a directed set equipped with a map g — A, that takes values in the space

S R M(fo; £)71 < A(f) < M(fo; f)
£._{A.CC(G)—>R for all f € CH(Q) }

Themap G — L : g — Ay isanet. A net can be thought of as an uncountable
analogue of a sequence and a subnet as an analogue of a subsequence. The
existence of a universal subnet is guaranteed by the general theory and its
convergence for each f by the fact that the target space is compact. Instead
Step 3 in the proof of Theorem implies that the original net g — A,
converges and so there is no need to choose a universal subnet. That this
can be proved with a refinement of the uniqueness argument (A in Step 4) is
pointed out in Pedersen [I6]. That paper also contains two further uniqueness
proofs. One is based on Fubini’s Theorem and the other on the Radon—
Nikodym Theorem. Another existence proof for compact second countable
Hausdorff groups is due to Pontryagin. It uses the Arzela—Ascoli theorem to
establish the existence of a sequence p; € & with ||| = 1 such that L, f
converges to a constant function whose value is then taken to be A(f).

Proof of Theorem [8.13. Existence and uniqueness in (i) follow directly from
Theorem [8.14] and the Riesz Representation theorem [3.15 That nonempty
open sets have positive measure follows from Urysohn’s Lemma [A.T To
prove (ii) consider the map ¢ : G — G defined by ¢(z) := 27! for z € G.
Since ¢ is a homeomorphism it preserves the Borel o-algebra B. Since
¢po R, = L,10¢, ameasure p : B — [0,00] is a left Haar measure if and
only if the measure v : B — [0, 00] defined by v(B) := u(¢(B)) = u(B™1) is
a right Haar measure. Hence assertion (ii) follows from (i).

We prove (iii). Assume G is compact and let p: B — [0, 1] be the unique
left Haar measure such that pu(G) = 1. For z € G define p, : B — [0,1]
by p(B) := p(R,(B)) for B € B. Since R, commutes with L, for all y
by (8.11), . is a left Haar measure. Since 11,(G) = pu(R.(G)) = p(G) =1
it follows that pu, = p for all x € G. Hence p is right invariant. Therefore
the map B — [0,1] : B+ v(B) := u(¢(B)) = u(B™') is a left Haar measure
and, since v(G) = 1, it agrees with p. This proves Theorem [8.12] O
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In the noncompact case the left and right Haar measures need not agree.
The above argument then shows that the measure p, differs from p by a
positive factor. Thus there exists a unique map p : G — (0, 00) such that

p(R2(B)) = p(x)u(B) (8.42)

forallz € Gandall B € B. Themap p: G — (0,00) in (8.42)) is a continuous
group homomorphism, called the modular character. It is independent of
the choice of . A locally compact Hausdorff group is called unimodular
iff its modular character is trivial or, equivalently, iff its left and right Haar
measures agree. Thus every compact Hausdorff group is unimodular.

Exercise 8.18. Prove that p is a continuous homomorphism.

Exercise 8.19. Prove that the group of all real 2 x 2-matrices of the form

a b
(0 1), a,b e R, a >0,

is not unimodular. Prove that the additive group R" is unimodular. Prove
that every discrete group is unimodular.

Exercise 8.20. Let v : B — [0, 00] be a right Haar measure. Show that the
modular character is characterized by the condition v(L,-1(B)) = p(x)v(B)

for all z € G and all B € B.

Haar measures are extremely useful tools in geometry, especially when the
group in question is compact. For example, if a compact Hausdorff group G
acts on a topological space X continuously via

GxX — X:(9,2) = gz, (8.43)

one can use the Haar measure to produce G-invariant continuous functions
by averaging. Namely, if f : X — R is any continuous function, and p is the
Haar measure on G with ;(G) = 1, then the function F': X — R defined by

F(x) := / f(a.z) dp(a) (8.44)
¢!
for z € X is G-invariant in that
F(g.x) = F(z)

for all z € X and all g € G.
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Exercise 8.21. Give a precise definition of what it means for a topological
group to act continuously on a topological space.

Exercise 8.22. Show that the map F' in (8.44)) is continuous and G-invariant.

Exercise 8.23. Let p : G — GL(V) be a homomorphism from a com-
pact Hausdorff group to the general linear group of automorphisms of a
finite-dimensional vector space. (Such a homomorphism is called a repre-
sentation of G.) Prove that V admits a G-invariant inner product. This
observation does not extend to noncompact groups. Show that the standard
representation of SL(2, R) on R? does not admit an invariant inner product.

Exercise 8.24. Show that the Haar measure on a discrete group is a multiple
of the counting measure. Deduce that for a finite group the formula
defines F'(x) as the average (with multiplicities) of the values of f over the
group orbit of z.

Exercise 8.25. Let G be a locally compact Hausdorff group and let pu be
a left Haar measure on G. Define the convolution product on L'(p). Show
that L'(u) is a Banach algebra. (See page[236]) Find conditions under which
f*g = gxf. Show that the convolution is not commutative in general. Hint:
See Section for G = R™. See also Step 3 in the proof of Theorem [8.14]
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Urysohn’s Lemma

Theorem A.1 (Urysohn’s Lemma). Let X be a locally compact Hausdorff
space and let K C X be a compact set and U C X be an open set such that

K cU.
Then there exists a compactly supported continuous function
f: X —[0,1]

such that

flx =1, supp(f):{xEX‘f(x)#O}CU. (A.1)
Proof. See page 281 [

Lemma A.2. Let X be a topological space and let K C X be compact. Then
the following holds.

(i) Every closed subset of K is compact.

(i) If X is Hausdorff then, for every y € X \ K, there exist open sets
UV CX suchthat KCcU,yeV,andUNV = 0.

(iii) If X is Hausdorff then K is closed.

Proof. We prove (i). Let F' C K be closed and let {U;};c; be an open cover
of F. Then the sets {U;};e; together with V := X \ F' form an open cover
of K. Hence there exist finitely many indices i1, ...,1, such that the sets
Uy,...,U;,,V cover K. Hence F' C U;; U---UU,, . This shows that every
open cover of F' has a finite subcover and so F' is compact.

279
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We prove (ii). Assume X is Hausdorff and let y € X \ K. Define
% :={UCX|Uisopenandy¢U}.

Since X is Hausdorff the collection % is an open cover of K. Since K is
compact, there exists finitely many set Uy, ..., U, € % such that

KcU:=UU---UU,.

Since y ¢ U, for all 7 it follows that y € V := X \ U and U NV = . Hence
the sets U and V satisfy the requirements of (ii).

We prove (iii). Assume X is Hausdorff. Then it follows from part (ii)
that, for every y € X \ K, there exists an open set V' C X such that y € V
and VN K = (. Hence X \ K is the union of all open sets in X that
are disjoint from K. Thus X \ K is open and so K is closed. This proves
Lemma [A.2] O

Lemma A.3. Let X be a locally compact Hausdorff space and let K,U be
subsets of X such that K is compact, U is open, and K C U. Then there
exists an open set V. .C X such that V' 1is compact and

KcVcVcu. (A.2)

Proof. We first prove the assertion in the case where K = {x} consist of
a single element. Choose a compact neighborhood B C X of . Then
F := B\ U is a closed subset of B and hence is compact by part (i) of
Lemma Since x ¢ F it follows from part (ii) of Lemma that there
exist open sets W, W’ C X such that z €¢ W, F ¢ W and W N W' = (.
Hence V := int(B) N W is an open neighborhood of z, its closure is a closed
subset of B and hence compact, and

VcBNWcCcB\W CcB\FcU.

This proves the lemma in the case #K = 1.

Now consider the general case. By the first part of the proof the open
sets whose closures are compact and contained in U form an open cover of K.
Since K is compact there exist finitely any open sets Vi, ..., V, such that V;
is a compact subset of U for all ¢ and K C (J_, Vi. Hence V :=J_, Vi is
an open set containing K and its closure V = [JI_, V; is a compact subset
of U. This proves Lemma O
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Proof of Theorem[A.1l The proof has three steps. The first step requires the
Axiom of Dependent Choice.

Step 1. There exists a family of open sets V, C X with compact closure,
parametrized by r € QN [0, 1], such that

KcwvcVicVycVycU (A.3)

and B
s>r = Vs CV, (A.4)

for allr,s € QN 0, 1].

The existence of open sets V and V; with compact closure satisfying
follows from Lemma[A.3] Now choose a bijective map No — QN [0,1] : i — ¢;
such that gy = 0 and ¢; = 1. Suppose by induction that the open sets
Vi = V,, have been constructed for ¢« = 0,1,...,n such that holds for
r,s € {qo,q1,---,q.}. Choose k,¢ € {0,1,...,n} such that

qr = max{¢;|0<i<n, ¢ < qui1},
¢ :=min{g; |0 <i<n, ¢ > qni1}-

Then V, C Vj,. Hence it follows from Lemmathat there exists an open set
Vas1 = Vgpn € X with compact closure such that V,C Vi1 C Vn+1 C V5.
This completes the induction argument and Step 1 then follows from the
Axiom of Dependent Choice. (Denote by V the set of all open sets V' C X
such that K € V € V C U. Denote by # the set of all finite sequences
v=(Vy,...,V,) in V that satisfy and ¢; < q; = V,; CV, forall i,j.
Define a relation on ¥ by v = (V4,...,V,,) <V = (V{,..., V) iff n <n’ and
Vi=V/fori=0,...,n. Then ¥ is nonempty and for every v € ¥ there is
a Vv’ € ¥ such that v < v/. Hence, by the Axiom of Dependent Choice, there
exists a sequence v; = (Vjo,...,Vjn,) € ¥ such that v; < v;;; for all j € N.
Define the map QN[0,1] = ¥ : ¢ — V, by V,, := V], fori,j € Nwithn; > i.
This map is well and satisfies and by definition of ¥ and <.)

Step 2. Let V. C X be as in Step 1 forr € QN [0,1]. Then
f(x) :=sup{reQn|0,1] |z € V,}

i {seQn 01|z ¢V} (A.5)

forallx € X. (Here the supremum of the empty set is zero and the infimum
over the empty set is one.)
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We prove equality in (A.5)). Fix a point z € X and define

a:=sup{reQnlo,1] |z eV},
b:=inf{s€Qn0,1]|z ¢ V,}.

We prove that a < b. If b = 1 this follows directly from the definitions.
Hence assume b < 1 and choose an element s € Q N [0, 1] such that

v ¢V,

If r € QN 0, 1] such that = € V, then V,.\ V, # ), hence V, C V,., and hence
r < s. Thus we have proved that

z eV, — r<s

for all r € QN [0, 1]. Take the supremum over all r € Q N [0, 1] with = € V;
to obtain a < s. Then take the infimum over all s € Q N [0,1] with = ¢ V
to obtain a < b. Now suppose, by contradiction, that a < b. Choose rational
numbers 7, s € QN [0, 1] such that a < r < s < b. Since a < r it follows that
x & V., since s < b it follows that 2 € V,, and since r < s it follows from
Step 1 that V', C V,. This is a contradiction and shows that our assumption
that a < b must have been wrong. Thus a = b and this proves Step 2.

Step 3. The function f: X — [0,1] in Step 2 is continuous and

fi = { 1 e o

Thus f satisfies the requirements of Theorem [A.1]

That f satisfies follows directly from the definition of f in (A.5). We
prove that f is continuous. To see this fix a constant ¢ € R. Then f(x) < ¢
if and only if there exists a rational number s € Q N [0, 1] such that s < ¢
and z ¢ V. Likewise, f(x) > c if and only if there exists a rational number
r € QN[0,1] such that r > ¢ and x € V,.. Hence

T eoco)= U Vio o0 = |J (X\Vy).

reQn(e,1] s€QN[0,c)

This implies that the pre-image under f of every open interval in R is an
open subset of X. Hence also the pre-image under f of every union of
open intervals is open in X and so f is continuous. This proves Step 3 and
Theorem [A Tl O
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Theorem A.4 (Partition of Unity). Let X be a locally compact Hausdorff
space, let Uy, ..., U, C X be open sets, and let K C U;U---UU, be a compact
set. Then there exist continuous functions fi,..., fn : X — R with compact
support such that

i=1

for alli and Y7 | fi(x) =1 forallz € K.
Proof. Define the set

“//::{VCX

V is open, V is compact, and there exists
an index ¢ € {1,...,n} such that V C U;

If x € K then x € U; for some index i € {1,...,n} and, by Lemma
there is an open set V C X such that V is compact and z € V C V C U,.
Thus ¥ is an open cover of K. Since K is compact there exist finitely many
open sets Vq,...,V, € ¥ such that K C ViU---UV,. Fori =1,...,n define

Kz' = U Vj.
1<5<e,V,;CU;

Then K C K1U---UK, and K; is a compact subset of U; for each 7. Hence it
follows from Urysohn’s Lemma that, for each 7, there exists a compactly
supported continuous function g; : X — R such that

0<g =<1, supp(gi) C Ui, Gilk, = 1.

Define
i = g,
fo = (1—01)g2,
fz = (1=g1)(1 — g2)g3,
fo = (1=g1) (1= Ggn1)gn

Then supp(f;) C supp(g;) C U; for each i and

1—Zfi:H(1—9z')-

i=1
Since K C Ky U---U K,, and the factor 1 — g; vanishes on K, this implies
>oo filxr) =1for all z € K. This proves Theorem |A.4] O
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Appendix B

The Product Topology

Let (X,Ux) and (Y,Uy) be topological spaces, denote the product space by
XXY::{(m,y)|;1:€X,y€Y},

and let 7x : X XY — X and my : X XY — Y be the projections onto
the first and second factor. Consider the following universality property for

a topology U C 2X*Y on the product space.
(P) Let (Z,Uz) be any topological space and let h: Z — X XY be any map.
Then h: (Z,Uz) — (X x Y,U) is continuous if and only if the maps

fi=mxoh:(Z,Uz) — (X,Ux), (B.1)
g:=myoh:(Z,Uz) — (Y,Uy) '

are continuous.

Theorem B.1. (i) There is a unique topology U on X XY that satisfies (P).
(ii) LetU C 2XY be asin (i). Then W € U if and only if there are open sets
Ui € Ux and V; € Uy, indexed by any set I, such that W = |J,c,;(U; x V;).
(iii) Let U C 2%V be as in (i). Then U is the smallest topology on X XY
with respect to which the projections mx and my are continuous.

(iv) LetU C 2X*Y be as in (i). Then the inclusion

L (Y\Uy) = (X xY,U), t:(y) == (z,9) fory ey,
1s continuous for every x € X and the inclusion

Ly (X, Ux) = (X x Y, U), Ly(x) == (z,9) forxz e X,

s continuous for every y € Y.
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Definition B.2. The product topology on X XY 1is defined as the unique
topology that satisfies (P) or, equivalently, as the smallest topology on X xY
such that the projections mx and Ty are continuous. It is denoted by

Uxwy C 2X><Y.

Proof of Theorem[B.1. The proof has five steps.

Step 1. IfU C 2%*Y is a topology satisfying (P) then the projections mx
and Ty are continuous.

Take h:=id : X XY — X XY sothat f =7wxoh =7y and g =1y oh = my.
Step 2. We prove uniqueness in (i).

Let U, U C 2°Y be two topologies satisfying (P) and consider the map
h:=id: (X xY,U) — (X xY,U'). Since f =7y : (X xY,U) — (X,Ux)
and ¢ = my @ (X x Y,U) — (Y,Uy) are continuous by Step 1, and U’
satisfies (P), it follows that h is continuous and hence U’ C U. Interchange
the roles of U and U’ to obtain U’ = U.

Step 3. We prove (ii) and existence in (i).

Define U C 2¥*¥ as the collection of all sets of the form W = J,,(U; x Vi),
where [ is any index set and U; € Ux, V; € Uy for i € I. Then U is a topology
and the projections mx : (X xXY,U) — (X,Ux) and 7y : (X xY,U) — (Y,Uy)
are continuous. We prove that U satisfies (P). To see this, let (Z,Uz) be any
topological space, let h : Z — X XY be any map, and define f := mx oh and
g :=my oh as in . If A is continuous then so are f and g. Conversely,
if f and g are continuous, then h=(U x V) = f~}(U)Ng~*(V) is open in Z
for all U € Ux and all V' € Uy, and hence it follows from the definition of I/
that A= (W) is open for all W € Y. Thus h is continuous.

Step 4. We prove (iii).

Let U be the topology in (i) and let U’ be any topology on X x Y with
respect to which mx and 7wy are continuous. If U € Ux and V € Uy then
UxV =na(U)Na, (V) €U'. Hence U C U’ by (ii). Since mx and 7y
are continuous with respect to U it follows that U/ is the smallest topology
on X x Y with respect to which 7y and 7y are continuous.

Step 5. We prove (iv).

Fix an element x € X and consider the map h := ¢, : Y — X x Y. Then
the map f :=7nxoh :Y — X is constant and g := my oh : Y — Y is
the identity. Hence f and g are continuous and so is h by condition (P). An
analogous argument shows that ¢, is continuous for all y € Y. O]



Appendix C

The Inverse Function Theorem

This appendix contains a proof of the inverse function theorem. The result
is formulated in the setting of continuously differentiable maps between open
sets in a Banach space. Readers who are unfamiliar with bounded linear
operators on Banach spaces may simply think of continuously differentiable
maps between open sets in finite-dimensional normed vector spaces. The in-
verse function theorem is used on page[71]in the proof of Lemma which
is a key step in the proof of the transformation formula for the Lebesgue mea-
sure (Theorem [2.17). Assume throughout that (X, |-||) is a Banach space.
When & : X — X is a bounded linear operator denote its operator norm by

|||

zeX\{0} ”x” .

1= 1Pl o (x) =
For € X and r > 0 denote by B,.(z) := {y € X | ||x — y|| < r} the open
ball of radius r about z. For x = 0 abbreviate B, := B,(0).

Theorem C.1 (Inverse Function Theorem). Fiz an element xy € X
and two real numbers r > 0 and 0 < o < 1. Let ¢ : B.(xg) — X be a
continuously differentiable map such that

ldv(z) = U] ) < for all z € B,(x). (C.1)

Then

Ba—ayr(¥(x0)) € (Br(20)) C Baatay (¥(20))- (C2)
Moreover, the map 1) is injective, its image is open, the map =" is contin-
uously differentiable, and diyp='(y) = dip(v = (y))™" for all y € ¥(B.(x)).
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Proof. Assume without loss of generality that xy = 1(zg) = 0.
Step 1. v is a homeomorphism onto its image and Y(B,) C Bta)r-
Define ¢ :=id — ¢ : B, — X. Then ||d¢(z)|| < « for all z € B,.. Hence

l6(z) = oY)l < allz =yl (C.3)

for all x,y € B, and so

(I=a)llz =yl < [l¥() @I < A +a)llz -yl (C.4)
The second inequality in shows that 1(B,) C B(ia)r and the first
inequality in shows that 1) is injective and ¢~ is Lipschitz continuous.
Step 2. Bu_q)r C ¥(B,).
Let £ € B(i_a), and define ¢ > 0 by ||{|| =: (1 — a)(r —€). Then, by
with y = 0, we have ||¢(z)|| < «||z| for all x € B,. If ||z|| < r—¢ this implies
lp(z) +&]] < r—e. Thus the map x +— ¢(x)+£ is a contraction of the closed

ball B,_.. By the contraction mapping principle it has a unique fixed point
x and the fixed point satisfies ¥(z) = x — ¢(x) = £. Hence £ € ¥(B,).

Step 3. ¥(B,) is open.

Let € B, and define y := 9(z). Choose € > 0 such that B.(x) C B,. Then,
by Step 2, Bu-a):(¢(z)) C (B:(z)) C ¥(B;).

Step 4. ¢! is continuously differentiable.

Let xy € B, and define yg := 1(zo) and ¥ := dip(zp). Then [|[1-¥| < a,s0 ¥
is invertible, U1 = >~ (1-U)* and [[¥ || < (1—a)™'. We prove that ¢!
is differentiable at yo and dip " (y9) = UL Let € > 0. Since ® is differentiable
at o and dy)(xg) = VU, there is a constant 6 > 0 such that, for all z € B, with
|z =0 < 0(1—a)™, we have ||t(z) = (20) =¥ (z—20) || < e(1—a)?[|z—z0l|.
Shrinking §, if necessary, we may assume, by Step 3, that Bs(yo) C ¥(B,).
Now suppose |ly — yo|| < ¢ and denote z := ¢~ (y) € B,. Then, by (C.4),
|z — 20| < (1 —a) |y — yoll < (1 — )~ and hence

Hi/fl(y) — ¢ (yo) =0y — yo)” = H‘If*l(y —yo — V(r — 900)) H
(@)~ b(a0) — ¥~ w)]
(1~ ) flo =

e lly — yoll -

Hence ¢! is differentiable at yo and diy ! (o) = ¥~ = dap(¢p " (y)) ™. Thus
d~! is continuous by Step 1. This proves Theorem |C.1] O
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